Marine piling - energy conversion factors in underwater radiated sound: review
A report which investigates the Energy Conversion Factor (ECF) method and provides recommendations regarding the modelling approaches for impact piling as used in environmental impact assessments (EIA) in Scottish Waters.
Literature Cited
[CEFAS] Centre for Environment, Fisheries and Aquaculture Science. 2018a. Moray West Offshore Windfarm. Technical Appendix 9.2: Underwater Noise Modelling. https://www.moraywest.com/download_file/force/650/219.
[CEFAS] Centre for Environment, Fisheries and Aquaculture Science. 2018b. Inch Cape Offshore Environmental Impact Assessment: Appendix 9B Underwater Noise Modelling. https://www.inchcapewind.com/wp-content/uploads/2020/10/IC01-EC-OFA-002-090-RRP-APE-002_Appendix_9B_Underwater_Noise_Modelling_REV_B.pdf.
[CEFAS] Centre for Environment, Fisheries and Aquaculture Science. 2018c. Inch Cape Offshore Environmental Impact Assessment: Appendix 10B Underwater Noise Modelling Using a 1 % Conversion Factor. https://www.inchcapewind.com/wp-content/uploads/2020/10/IC01-EC-OFA-002-100-RRP-APE-002_Appendix_10B_Under_Water_Noise_Modelling_Using_a_1_..._RevA.pdf.
[CEFAS] Centre for Environment, Fisheries and Aquaculture Science. 2018d. Seagreen EIA Report Vol 3 App 10E Piling Noise Impact Assessment using A 1% Acoustic Energy Conversion Factor and use of Acoustic Deterrent Devices. https://www.seagreenwindenergy.com/_files/ugd/fe5128_15df6126e6b44b108600d1edfcdedab0.pdf.
[CEFAS] Centre for Environment, Fisheries and Aquaculture Science. 2019. Moray East Offshore Wind Farm: Wind Farm Piling Strategy Appendix 1 Underwater Noise Modelling. https://marine.gov.scot/sites/default/files/moray_east_wind_farm_ps_v.3_redacted.pdf.
[ISO] International Organization for Standardization. 2006. ISO 80000-3:2006 Quantities and units – Part 3: Space and time. https://www.iso.org/standard/31888.html.
[ISO] International Organization for Standardization. 2017. ISO 18405:2017. Underwater acoustics – Terminology. Geneva. https://www.iso.org/standard/62406.html.
[Seiche Ltd]. 2022. Berwick Bank Wind Farm Digital Consent Application / EIA Documents. Volume 3 Appendix 10.1 Subsea Noise Technical Report (webpage). https://berwickbank-eia.com/offshore-eia/vol3-ap1001-Subsea-Noise-Technical-Report/. (Accessed 30th March).
Ainslie, M.A. 2010. Principles of Sonar Performance Modeling. Praxis Books. Springer, Berlin. https://doi.org/10.1007/978-3-540-87662-5.
Ainslie, M.A., P.H. Dahl, C.A.F. de Jong, and R.M. Laws. 2014. Practical Spreading Laws: The Snakes and Ladders of Shallow Water Acoustics. UA2014 - 2nd International Conference and Exhibition on Underwater Acoustics, 22-27 Jun 2014, Island of Rhodes, Greece, pp. 879-886.
Ainslie, M.A., M.B. Halvorsen, R.A.J. Müller, and T. Lippert. 2020. Application of damped cylindrical spreading to assess range to injury threshold for fishes from impact pile driving. Journal of the Acoustical Society of America 148(1): 108-121. https://doi.org/10.1121/10.0001443.
Buckingham, M.J. 2005. Compressional and shear wave properties of marine sediments: Comparisons between theory and data. Journal of the Acoustical Society of America 117: 137-152. https://doi.org/10.1121/1.1810231.
Collins, M.D. 1993. A split-step Padé solution for the parabolic equation method. Journal of the Acoustical Society of America 93(4): 1736-1742. https://doi.org/10.1121/1.406739.
Dahl, P.H., P.G. Reinhall, and D.M. Farrell. 2012. Transmission loss and range, depth scales associated with impact pile driving. Processings of the 11th European Conference on Underwater Acoustics. Institute of Acoustics, Edinburgh, UK, pp. 1860-1867.
Dahl, P.H. and P.G. Reinhall. 2013. Beam forming of the underwater sound field from impact pile driving. Journal of the Acoustical Society of America 134(1): EL1-EL6. https://doi.org/10.1121/1.4807430.
Dahl, P.H., C.A.F. de Jong, and A.N. Popper. 2015. The Underwater Sound Field from Impact Pile Driving and Its Potential Effects on Marine Life. Acoustics Today 11(2): 18-25. https://acousticstoday.org/issues/2015AT/Spring2015/#?page=20.
Dahl, P.H. and D.R. Dall'Osto. 2017. On the underwater sound field from impact pile driving: Arrival structure, precursor arrivals, and energy streamlines. Journal of the Acoustical Society of America 142(2): 1141-1155. https://doi.org/10.1121/1.4999060.
de Jong, C.A.F. and M.A. Ainslie. 2008. Underwater radiated noise due to the piling for the Q7 Offshore Wind Park. Journal of the Acoustical Society of America 123(5): 2987. https://doi.org/10.1121/1.2932518.
de Jong, C.A.F., B. Binnerts, M.K. Prior, M. Colin, M.A. Ainslie, I. Mulder, and I. Hartstra. 2019. Wozep–WP2: Update of the Aquarius models for marine pile driving sound predictions. Report by TNO. Document Number R11671. 94 p.
Etter, P.C. 2012. Advanced Applications for Underwater Acoustic Modeling. Advances in Acoustics and Vibration 2012: 1-28.
Farcas, A., P.M. Thompson, and N.D. Merchant. 2016. Underwater noise modelling for environmental impact assessment. Environmental Impact Assessment Review 57: 114-122. https://doi.org/10.1016/j.eiar.2015.11.012.
Farcas, A., N.D. Merchant, and R.C. Faulkner. 2018. Seagreen EIA Report Vol 3 App 10B CEFAS Noise Modelling Technical Report. Cefas. https://www.seagreenwindenergy.com/_files/ugd/fe5128_180f558f760f404bb1dc9b4fa99254ab.pdf.
Faulkner, R.C., A. Farcas, M. Nimak-Wood, and H. Buckley. 2021. Underwater noise effect assessment for the Sizewell C revised marine freight options. The Sizewell C Project. https://infrastructure.planninginspectorate.gov.uk/wp-content/ipc/uploads/projects/EN010012/EN010012-006230-Sizewell%20C%20Project%20-%20Other-%20Underwater%20Noise%20Report.pdf.
Graham, I.M., N.D. Merchant, A. Farcas, T.R. Barton, B. Cheney, S. Bono, and P.M. Thompson. 2019. Harbour porpoise responses to pile-driving diminish over time. Royal Society Open Science 6(6): 190335. https://doi.org/10.1098/rsos.190335.
Hamilton, E.L. 1980. Geoacoustic modeling of the sea floor. Journal of the Acoustical Society of America 68(5): 1313-1340. https://doi.org/10.1121/1.385100.
Harrison, C.H. and J.A. Harrison. 1995. A simple relationship between frequency and range averages for broadband sonar. Journal of the Acoustical Society of America 97(2): 1314-1317. https://doi.org/10.1121/1.412172.
Harrison, C.H. 2013. Ray convergence in a flux-like propagation formulation. J Acoust Soc Am 133(6): 3777-89. NLM. https://www.ncbi.nlm.nih.gov/pubmed/23742332.
Heaney, K.D., M.A. Ainslie, M.B. Halvorsen, K.D. Seger, R.A.J. Müller, M.J.J. Nijhof, and T. Lippert. 2020. A Parametric Analysis and Sensitivity Study of the Acoustic Propagation for Renewable Energy Sources. Report by CSA Ocean Sciences Inc. for US Department of the Interior, Bureau of Ocean Energy Management, Office of Renewable Energy Programs. OCS Study BOEM 2020-011, Sterling, VA. 165 p. https://espis.boem.gov/final%20reports/BOEM_2020-011.pdf.
Holzer, T.L., M.J. Bennett, T.E. Noce, and J.C. Tinsley. 2005. Shear-Wave Velocity of Surficial Geologic Sediments in Northern California: Statistical Distributions and Depth Dependence. Earthquake Spectra 21(1): 161-177. https://doi.org/10.1193/1.1852561.
Jensen, F.B., W.A. Kuperman, M.B. Porter, and H. Schmidt. 2011. Computational Ocean Acoustics. 2nd edition. AIP Series in Modern Acoustics and Signal Processing. AIP Press - Springer, New York. 794 p. https://doi.org/10.1007/978-1-4419-8678-8.
Lippert, S., M. Huisman, M. Ruhnau, O. von Estorff, and K. van Zanwijk. 2017. Prognosis of underwater pile driving noise for submerged skirt piles of jacket structures. 4th Underwater Acoustics Conference and Exhibition (UACE 2017), 2-8 Sep 2017, Skiathos, Greece. https://www.uaconferences.org/docs/UACE2017_Papers/903_UACE2017.pdf.
Lippert, T., M. Galindo-Romero, A.N. Gavrilov, and O. von Estorff. 2015. Empirical estimation of peak pressure level from sound exposure level. Part II: Offshore impact pile driving noise. Journal of the Acoustical Society of America 138(3): EL287-EL292. https://doi.org/10.1121/1.4929742.
Lippert, T., M.A. Ainslie, and O. von Estorff. 2018. Pile driving acoustics made simple: Damped cylindrical spreading model. Journal of the Acoustical Society of America 143(1): 310-317. https://doi.org/10.1121/1.5011158.
MacGillivray, A.O. 2014. A model for underwater sound levels generated by marine impact pile driving. Proceedings of Meetings on Acoustics 20(1). https://doi.org/10.1121/2.0000030
Nehls, G., K. Betke, S. Eckelmann, and M. Ros. 2007. Assessment and costs of potential engineering solutions for the mitigation of the impacts of underwater noise arising from the construction of offshore windfarms. Document Number Report by BioConsult SH for COWRIE.
Pile Dynamics, Inc. 2010. GRLWEAP. https://www.pile.com/.
Popper, A.N., A.D. Hawkins, R.R. Fay, D.A. Mann, S. Bartol, T.J. Carlson, S. Coombs, W.T. Ellison, R.L. Gentry, et al. 2014. Sound Exposure Guidelines for Fishes and Sea Turtles: A Technical Report prepared by ANSI-Accredited Standards Committee S3/SC1 and registered with ANSI. ASA S3/SC1.4 TR-2014. SpringerBriefs in Oceanography. ASA Press and Springer. https://doi.org/10.1007/978-3-319-06659-2.
Reinhall, P.G. and P.H. Dahl. 2011. Underwater Mach wave radiation from impact pile driving: Theory and observation. Journal of the Acoustical Society of America 130(3): 1209-1216. https://doi.org/10.1121/1.3075600.
Robinson, S.P., P.A. Lepper, and J. Ablitt. 2007. The measurement of the underwater radiated noise from marine piling including characterisation of a" soft start" period. OCEANS 2007. 18-21 Jun 2007. IEEE, Aberdeen, UK. pp. 732-737. https://doi.org/10.1109/OCEANSE.2007.4302326.
RPS, G.C. Ltd, and B.a.M. Marine. 2015. Beatrice Offshore Wind Farm Piling Strategy. Document Number LF000005-PLN-142. https://marine.gov.scot/sites/default/files/00522494.pdf.
Sertlek, H.Ö. and M.A. Ainslie. 2014. A depth-dependent formula for shallow water propagation. Journal of the Acoustical Society of America 136(2): 573-582. https://doi.org/10.1121/1.4884762.
Sertlek, H.Ö., M.A. Ainslie, and K.D. Heaney. 2019. Analytical and Numerical Propagation Loss Predictions for Gradually Range-Dependent Isospeed Waveguides. IEEE Journal of Oceanic Engineering 44(4): 1240-1252. https://doi.org/10.1109/JOE.2018.2865640.
Southall, B.L., A.E. Bowles, W.T. Ellison, J.J. Finneran, R.L. Gentry, C.R. Greene, Jr., D. Kastak, D.R. Ketten, J.H. Miller, et al. 2007. Marine Mammal Noise Exposure Criteria: Initial Scientific Recommendations. Aquatic Mammals 33(4): 411-521. https://doi.org/10.1578/AM.33.4.2007.411.
Southall, B.L., J.J. Finneran, C.J. Reichmuth, P.E. Nachtigall, D.R. Ketten, A.E. Bowles, W.T. Ellison, D.P. Nowacek, and P.L. Tyack. 2019. Marine Mammal Noise Exposure Criteria: Updated Scientific Recommendations for Residual Hearing Effects. Aquatic Mammals 45(2): 125-232. https://doi.org/10.1578/AM.45.2.2019.125.
Thompson, P.M., I.M. Graham, B. Cheney, T.R. Barton, A. Farcas, and N.D. Merchant. 2020. Balancing risks of injury and disturbance to marine mammals when pile driving at offshore windfarms. Ecological Solutions and Evidence 1(2).
Tsouvalas, A. 2020. Underwater Noise Emission Due to Offshore Pile Installation: A Review. Energies 13(12): 3037. https://doi.org/10.3390/en13123037.
von Pein, J., T. Lippert, S. Lippert, and O. von Estorff. 2022. Scaling laws for unmitigated pile driving: Dependence of underwater noise on strike energy, pile diameter, ram weight, and water depth. Applied Acoustics 198: 108986. https://doi.org/10.1016/j.apacoust.2022.108986.
Wang, L., K.D. Heaney, T. Pangerc, P. Theobald, S. Robinson, and M.A. Ainslie. 2014. Review of underwater acoustic propagation models. Document Number AC 12 Report Number 1754-2936. Report by National Physical Laboratory, OASIS, and TNO.
Weston, D.E. 1976. Propagation in water with uniform sound velocity but variable-depth lossy bottom. Journal of Sound and Vibration 47(4): 473-483. https://doi.org/10.1016/0022-460X(76)90874-9.
Zampolli, M., M.J.J. Nijhof, C.A.F. de Jong, M.A. Ainslie, E.H.W. Jansen, and B.A.J. Quesson. 2013. Validation of finite element computations for the quantitative prediction of underwater noise from impact pile driving. Journal of the Acoustical Society of America 133(1): 72-81. https://doi.org/10.1121/1.4768886.
Contact
Email: ScotMER@gov.scot
There is a problem
Thanks for your feedback