Offshore Wind Sustained Observation Programme (OW-SOP): scoping report

Physical processes are important as they influence the productivity of the phytoplankton which form the base of the entire North Sea ecosystem. This project recommends approaches to assess the potential impact of offshore wind farms on physical processes.


7 References

Abramic, A., Cordero-Penin, V., & Haroun, R. (2022). Environmental Impact Assessment Review, 97, 106862.

Akhtar, N., Geyer, B., Rockel, B., Sommer, P. S., & Schrum, C. (2021). Accelerating deployment of offshore wind energy alter wind climate and reduce future power generation potentials. Sci. Rep., 11:11826.

Bean, T. P., Greenwood, N., Beckett, R., Biermann, L., Bignell, J. P., Brant, J. L., . . . al., e. (2017). A review of the tools used for marine monitoring in the UK: combining historic and contemporary methods with modeling and socioeconomics to fulfill legislative needs and scientific ambitions. Front. Mar. Sci., 4(263).

BGS. (2014). North Sea Interactive: a Decision-support Tool to Guide Environmental Monitoring by the Oil and Gas Industry. Retrieved from British Geological Survey.

Broström, G. (2008). On the influence of large wind farms on the upper ocean circulation. J. Mar. Syst, 74, 585–591.

Burkhard, B., Opitz, S., Lenhart, H., Ahrendt, K., Garthe, S., Mendel, B., & Windhorst, W. (2011). Ecosystem based modeling and indication of ecological integrity in the German North Sea—Case study offshore wind parks. Ecological Indicators, 11(1), 168-174.

Carpenter, J. R., Merckelbach, L., Callies, U., Clark, S., Gaslikova, L., & Baschek, B. (2016). Potential impacts of offshore wind farms on North Sea stratification. PloS one, 11(8), e0160830.

Cazenave, P. W., Torres, R., & Allen, J. I. (2016). Unstructured grid modelling of offshore wind farm impacts on seasonally stratified shelf seas. Progress in oceanography, 145, 25-41.

Christiansen, N., Carpenter, J. R., Daewel, U., Suzuki, N., & Schrum, C. (2023). The large-scale impact of anthropogenic mixing by offshore wind turbine foundations in the shallow North Sea. Frontiers in Marine Science, 10, 1178330.

Christiansen, N., Daewel, U., & Schrum, C. (2022b). Tidal mitigation of offshore wind wake effects in coastal seas. Front. Mar. Sci., 9.

Christiansen, N., Daewel, U., Djath, B., & Schrum, C. (2022). Emergence of Largescale hydrodynamic structures due to atmospheric offshore wind farm wakes. Front. Mar. Sci, 9.

Churchfield, M. J., Lee, S., Michalakes, J., & Moriarty, P. J. (2012). A numerical study of the effects of atmospheric and wake turbulence on wind turbine dynamics. J. Turbul., 13(14).

Ciavatta, S., Torres, R., Saux‐Picart, S., & Allen, J. I. (2011). Can ocean color assimilation improve biogeochemical hindcasts in shelf seas? Journal of Geophysical Research: Oceans, 116(C12).

Claisse, J. T., Pondella, D. J., Love, M., Zahn, L. A., Williams, C. M., Williams, J. P., & Bull, A. S. (2014). Oil platforms off California are among the most productive marine fish habitats globally. Proceedings of the National Academy of Sciences, 111(43), 15462-15467.

Cristini, L., Lampitt, R. S., Cardin, V., Delory, E., Haugan, P., O'Neill, N., . . . Ruhl, H. A. (2016). Cost and value of multidisciplinary fixed-point ocean observatories. . Marine policy, 71, 138-146.

Crown Estate Scotland. (2024). Current offshore wind projects.

Daewel, U., Akhtar, N., Christiansen, N., & Schrum, C. (2022). Offshore wind farms are projected to impact primary production and bottom water deoxygenation in the North Sea. Commun. Earth Environ, 3(292).

Dannheim, J., Bergström, L., Birchenough, S. N., Brzana, R., Boon, A. R., Coolen, J. W., & al., e. (2020). Benthic effects of offshore renewables: identification of knowledge gaps and urgently needed research. ICES J. Mar. Sci., 77, 1092–1108.

Danovaro, R., Carugati, L., Berzano, M., Cahill, A. E., Carvalho, S., Chenuil, A., . . . al, e. (2016). Implementing and innovating marine monitoring approaches for assessing marine environmental status. 3, 213. Frontiers in Marine Science, 3.

De Dominicis, M., Wolf, J., & O'Hara Murray, R. (2018). Comparative effects of climate change and tidal stream energy extraction in a shelf sea. Journal of Geophysical Research: Oceans, 123(7), 5041-5067.

DEFRA. (2022). Department for Environment, Farming and Rural Affairs Marine Strategy Part Two: UK updated monitoring programmes. United Kingdom.

Department of the Environment. (1976). The separation of oil from water for North Sea oil operations. A Report by the Central Unit on Environmental Pollution. Pollution Paper no. 6. Her Majesty’s Stationary Office, London.

Devlin, M., Bricker, S., & Painting, S. (2011). Comparison of five methods for assessing impacts of nutrient enrichment using estuarine case studies. Biogeochemistry, 106, 177-205.

Diaz, R. J., & Rosenberg, R. (2008). Spreading dead zones and consequences for marine ecosystems. science, 321(5891), 926-929.

Dorrell, R. M., Lloyd, C. J., Lincoln, B. J., Rippeth, T. P., Taylor, J. R., Caulfield, C. C., . . . Hall, R. A. (2022). Anthropogenic mixing in seasonally stratified shelf seas by offshore wind farm infrastructure. Frontiers in Marine Science, 9, 830927.

Emeis, S. (2010). A simple analytical wind park model considering atmospheric stability. Wind Energ., 13, 459–469.

Eriksson, O., Lindvall, J., Breton, S. P., & Ivanell, S. (2015). Wake downstream of the Lillgrund wind farm-a comparison between LES using the actuator disc method and a Wind Farm Parametrization in WRF. J. Phys. Conf. Ser., 625, 012028.

Esteban, M. D., Diez, J. J., López, J. S., & Negro, V. (2011). Why offshore wind energy? Renew Energy, 36, 444-450.

Exo, K. M., Huppop, O., & Garthe, S. (2003). Birds and offshore wind farms: a hot topic in marine ecology. Bull. Wader Study Group, 100, 50–53.

Fitch, A. C., Olson, J. B., Lundquist, J. K., Dudhia, J., Gupta, A. K., Michalakes, J., & Barstad, I. (2012). Local and mesoscale impacts of wind farms as parameterized in a mesoscale NWP model. Mon. Monthly Weather Review, 140(9), 3017-3038.

Floeter, J. J., Callies, J., Carpenter, T., Dudeck, S., Eberle, A., Eckhardt, D., . . . al, e. (2017). Pelagic effects of offshore wind farm foundations in the stratified North Sea. Progress in Oceanography, 156, 154-173.

Floeter, J., Pohlmann, T., Harmer, A., & Möllmann, C. (2022). Chasing the offshore wind farm wind-wake-induced upwelling/downwelling dipole. Frontiers in Marine Science, 9, 884943.

Forster, R. M. (2018). The effect of monopile-induced turbulence on local suspended sediment patterns around uk wind farms: field survey report. An IECS report to The Crown Estat.

Franco, A., Quintino, V., & Elliott, M. (2015). Benthic monitoring and sampling design and effort to detect spatial changes: a case study using data from offshore wind farm sites. Ecological Indicators, 57, 298-304.

Frandsen, S. (1992). On the wind speed reduction in the center of large clusters of wind turbines. J. Wind Eng. Indust. Aerodynam., 39, 251–265.

Frandsen, S., Barthelmie, R., Pryor, S., Rathmann, O., Larsen, S., & Højstrup, J. (2006). Analytical modelling of wind speed deficit in large offshore wind farms. Wind Energy: An International Journal for Progress and Applications in Wind Power Conversion Technology, 9(1-2), 39-53.

Fujii, T. (2015). Temporal variation in environmental conditions and the structure of fish assemblages around an offshore oil platform in the North Sea. Marine Environmental Research, 108, 69-82.

Fujii, T. (2016). Potential influence of offshore oil and gas platforms on the feeding ecology of fish assemblages in the North Sea. Marine Ecology Progress Series, 524, 167-186.

Future Energy Scenarios. (2023). FES Report.

Galparsoro, I., Menchaca, I., Garmendia, J. M., Borja, A., Maldonado, A. D., Iglesias, G., & Bald, J. (2022). Reviewing the ecological impacts of offshore wind farms. npj Ocean Sustainability, 1(1).

Gass, S. E., & Roberts, J. M. (2006). The occurrence of the cold-water coral Lophelia pertusa (Scleractinia) on oil and gas platforms in the North Sea: Colony growth, recruitment and environmental controls on distribution. Marine Pollution Bulletin, 52(5), 549-559.

Gates, A. R., Horton, T., Serpell-Stevens, A., Chandler, C., Grange, L. J., Robert, K., . . . Jones, D. O. (2019). Ecological Role of an Offshore Industry Artificial Structure. Frontiers in Marine Science, 6.

GEBCO. (2023). The GEBCO_2023 Grid. Retrieved from

Global Offshore Wind Health and Safety Organisation. (2024). Delivering world-class health and safety performance in the offshore wind industry.

Gray, T., Haggett, C., & Bell, D. (2005). Offshore wind farms and commercial fisheries in the uk: a study in stakeholder consultation. Ethics Place Environ, 8, 127–140.

Halouani, G., Villanueva, C. M., Raoux, A., Dauvin, J. C., Lasram, F. B., Foucher, E., . . . Niquil, N. (2020). A spatial food web model to investigate potential spillover effects of a fishery closure in an offshore wind farm. Journal of Marine Systems, 212, 103434.

Halpern, B. S., McLeod, K. L., Rosenberg, A. A., & Crowder, L. B. (2008). Managing for cumulative impacts in ecosystem-based management through ocean zoning. Ocean & Coastal Management, 51(3), 203-211.

Haraldsson, M., Raoux, A., Riera, F., Hay, J., Dambacher, J. M., & Niquil, N. (2020). How to model social-ecological systems?–A case study on the effects of a future offshore wind farm on the local society and ecosystem, and whether social compensation matters. Marine Policy, 119, 104031.

Hartley, J., Trueman, R., Anderson, S., Neff, J., Dando, P., & Fucik, K. (2003). Drill Cuttings Initiative, Food Chain Effects Literature Review.

Hartman, S. E., Lampitt, R. S., Larkin, K. E., Pagnani, M., Campbell, J., Gkritzalis, T., . . . al., e. (2012). The Porcupine Abyssal Plain fixed-point sustained observatory (PAP-SO): variations and trends from the Northeast Atlantic fixed-point time-series. ICES Journal of Marine Science, 69(5), 776-783.

Henry, L. A., Harries, D., Kingston, P., & Roberts, J. M. (2017). Historic scale and persistence of drill cuttings impacts on North Sea benthos. Marine Environmental Research, 129, 219-228.

Henry, L. A., Mayorga-Adame, C. G., Fox, A. D., Polton, J. A., Ferris, J. S., McLellan, F., . . . Roberts, J. M. (2018). Ocean sprawl facilitates dispersal and connectivity of protected species. Scientific Reports, 8(1).

Hill, A. E., Brown, J., Fernand, L., Holt, J., Horsburgh, K. J., Proctor, R., . . . Turrell, W. R. (2008). Thermohaline circulation of shallow tidal seas. Geophysical Research Letters, 35(11).

Holt, J., Harle, J., Wakelin, S., Jardine, J., & Hopkins, J. (2022). Why Is Seasonal Density Stratification in Shelf Seas Expected to Increase Under Future Climate Change? Geophysical Research Letters, 49(23).

Holt, J., Polton, J., Huthnance, J., Wakelin, S., O'dea, E., Harle, J., . . . Inall, M. (2018). Climate-Driven Change in the North Atlantic and Arctic Oceans Can Greatly Reduce the Circulation of the North Sea. Geophysical Research Letters, 45(21), 11-827.

Holt, J., Schrum, C., Cannaby, H., Daewel, U., Allen, I., Artioli, Y., . . . Wakelin, S. (2016). Potential impacts of climate change on the primary production of regional seas: A comparative analysis of five European seas. Progress in Oceanography, 140, 91-115.

Hooper, T., Austen, M., & Lannin, A. (2021). Developing policy and practice for marine net gain. Journal of Environmental Management, 277, 111387.

Howland, M. F., Lele, S. K., & Dabiri, J. O. (2019). Wind farm power optimization through wake steering. Proc. Natl. Acad. Sci. U.S.A., 116, 14495–14500.

Huang, H. Y., & Hall, A. D. (2015). Preliminary Assessment Of Offshore Wind Development Impacts On Marine Atmospheric Environment: Final Project Report. Technical report. UCLA Department of Atmospheric and Oceanic Sciences.

ICES. (2020). Developing a cumulative effects framework . Retrieved November 21, 2023

Jacobsen, H. K., Hevia-Koch, P., & Wolter, C. (2019). Nearshore and offshore wind development: Costs and competitive advantage exemplified by nearshore wind in Denmark. Energy for sustainable development, 50, 91-100.

Janßen, H., Schröder, T., Zettler, M. L., & Pollehne, F. (2015). Offshore wind farms in the southwestern Baltic Sea: A model study of regional impacts on oxygen conditions. Journal of Sea Research, 95, 248-257.

Jennings, S., & Le Quesne, W. J. (2012). Integration of environmental and fishery management in Europe. ICES Journal of Marine Science, 69(8), 1329-1332.

Jiménez, P. A., Navarro, J., Palomares, A. M., & Dudhia, J. (2015). Mesoscale modeling of offshore wind turbine wakes at the wind farm resolving scale: a composite-based analysis with the Weather Research and Forecasting model over Horns Rev. Wind Energy, 18(3), 559-566.

Jones, D. O., Gates, A. R., Huvenne, V. A., Phillips, A. B., & Bett, B. J. (2019). Autonomous marine environmental monitoring: Application in decommissioned oil fields. Science of the Total Environment, 668, 835-853.

Kingston, P. F. (1992). Impact of offshore oil production installations on the benthos of the North Sea. ICES Journal of Marine Science, 49, 45-53.

Kingston, P. F., Warren, L. M., Hughes, R. G., Earll, R., Parker, J. G., & Gray, J. S. (1987). Field Effects of Platform Discharges on Benthic Macrofauna. Philosophical Transactions of the Royal Society of London Series B-Biological Sciences, 316(1181), 545-565.

Kröger, S., Parker, R., Cripps, G., & Williamson, P. (2018). Shelf Seas: The Engine of Productivity, Policy Report . NERC-Defra Shelf Sea Biochemistry Programme. Lowesoft: Cefas.

Kumar, P., Debele, S. E., Sahani, J., Rawat, N., Marti-Cardona, B., Alfieri, S. M., & ... Zieher, T. (2021). An overview of monitoring methods for assessing the performance of nature-based solutions against natural hazards. Earth-Science Reviews, 217, 103603.

Lampitt, R. S., Boorman, B., Brown, L., Lucas, M., Salter, I., Sanders, R., . . . Turnewitsch, R. (2008). Particle export from the euphotic zone: Estimates using a novel drifting sediment trap, 234Th and new production. Deep Sea Research Part I: Oceanographic Research Papers, 55(11), 1484-1502.

Larminie, F. G., Clark, R. B., Rudd, J. K., & Tasker, M. L. (1987). The History and Future of North Sea Oil and Gas: An Environmental Perspective [and Discussion]. Philosophical Transactions of the Royal Society of London. B, Biological Sciences, 316(1181), 487-493.

Lass, H. U., Mohrholz, V., Knoll, M., & Prandke, H. (2008). Enhanced mixing downstream of a pile in an estuarine flow. Journal of Marine Systems, 74(1-2), 505-527.

Lee, J. C., & Lundquist, J. K. (2017). Evaluation of the wind farm parameterization in the Weather Research and Forecasting model (version 3.8.1) with meteorological and turbine power data. Geosci. Model Dev, 10, 4229–4244.

Li, X., Chi, L., Chen, X., Ren, Y., & Lehner, S. (2014). SAR observation and numerical modeling of tidal current wakes at the East China Sea offshore wind farm. Journal of Geophysical Research: Oceans, 119(8), 4958-4971.

Lindeboom, H. J., Degraer, S., Dannheim, J., Gill, A. B., & Wilhelmsson, D. (2015). Offshore wind park monitoring programmes, lessons learned and recommendations for the future. Hydrobiologia.

Lindeboom, H. J., Kouwenhoven, H. J., Bergman, M. J., Bouma, S., Brasseur, S. M., Daan, R., & ... Scheidat, M. (2011). Short-term ecological effects of an offshore wind farm in the Dutch coastal zone; a compilation. Environmental Research Letters, 6(3), 035101. doi:10.1088/1748-9326/6/3/035101

Ludewig, E. (2014). Influence of offshore wind farms on atmosphere and ocean dynamics. (Doctoral dissertation, Staats-und Universitätsbibliothek Hamburg Carl von Ossietzky).

Ludewig, E. (2015). On the Effect of Offshore Wind Farms on the Atmosphere and Ocean Dynamics. Cham: Springer International Publishing.

Maar, M., Bolding, K., Petersen, J. K., Hansen, J. L., & Timmermann, K. (2009). Local effects of blue mussels around turbine foundations in an ecosystem model of Nysted off-shore wind farm, Denmark. Journal of Sea Research, 62(2-3), 159-174.

Marine Scotland. (2020). Changes in the ocean climate: Stratification.

Mathis, M., & Pohlmann, T. (2014). Projection of physical conditions in the North Sea for the 21st century. Climate Research, 1-17.

Mathis, M., Elizalde, A., & Mikolajewicz, U. (2018). Which complexity of regional climate system models is essential for downscaling anthropogenic climate change in the Northwest European Shelf? Climate Dynamics, 50, 2637-2659. doi:https://doi.org/10.1007/s00382-017-3761-3

Mauffrey, F., Cordier, T., Apothéloz-Perret-Gentil, L., Cermakova, K., Merzi, T., Delefosse, M., . . . Pawlowski, J. (2021). Benthic monitoring of oil and gas offshore platforms in the North Sea using environmental DNA metabarcoding. Molecular Ecology, 30(13), 3007-3022.

Maxwell, S. M., Kershaw, F., Locke, C. C., Conners, M. G., Dawson, C., Aylesworth, S., & ... Johnson, A. F. (2022). Potential impacts of floating wind turbine technology for marine species and habitats. Journal of Environmental Management, 307, 114577. doi:https://doi.org/10.1016/j.jenvman.2022.114577

Medhaug, I., Stolpe, M. B., Fischer, E. M., & Knutti, R. (2017). Reconciling controversies about the ‘global warming hiatus'. Nature, 545(7652), 41-47.

Merchant, N. D., Brookes, K. L., Faulkner, R. C., Bicknell, A. W., Godley, B. J., & Witt, M. J. (2016). Underwater noise levels in UK waters. Scientific reports, 6(1), 36942.

Morris, K. J., Bett, B. J., Durden, J. M., Benoist, N. M., Huvenne, V. A., Jones, D. O., . . . Ruhl, H. A. (2016). Landscape-scale spatial heterogeneity in phytodetrital cover and megafauna biomass in the abyss links to modest topographic variation. Scientific Reports, 6, 34080.

Nerge, P., & Lenhart, H. (2010). Wake effects in analyzing coastal and marine changes: offshore wind farming as a case study In: Anal Coast Mar Chang Offshore Wind Farming as a Case Study. In M. Lange, B. Burkhard, S. Garthe, K. Gee, A. Kannen, H. Lenhart, & e. a. (Eds), Analyzing Coastal and Marine Changes - Offshore Wind Farming as a Case Study - Zukunft Küste - Coastal Futures Synthesis Report. Germany: LOICZ Research and Studies n.36.

Offshore Renewable Energy Action Coalition. (2020). The Power of Our Ocean Report.

Offshore Wind Scotland. (2023). ScotWind Leasing Round.

Offshore Wind Scotland. (2024). Scottish offshore wind farms and project pipeline.

Olenin, S., Ojaveer, H., Minchin, D., & Boelens, R. (2016). Assessing exemptions under the ballast water management convention: preclude the Trojan horse. Marine Pollution Bulletin, 103(1-2), 84-92.

Olsen, N. V., & Motarjemi, Y. (2014). Food safety assurance systems: food safety and ethics. In: Encyclopedia of Food Safety. Elsevier.

OSPAR. (2003a). Strategies of the OSPAR Commission for the Protection of the Marine Environment of the North-East Atlantic (Reference number: 2003-21). EUC 03/17/1-E Annex 31.

OSPAR. (2003b). The OSPAR Integrated Report 2003 on the Eutrophication Status of the OSPAR Maritime Area based upon the First Application of the Comprehensive Procedure. OSPAR Publication 2003.

OSPAR. (2010). The OSPAR Strategy (The North-East Atlantic Environment Strategy).

OSPAR. (2020). OSPAR Commission: MSFD Supporting Documentation.

Otto, L., Zimmerman, J. T., Furnes, G. K., Mork, M., Saetre, R., & Becker, G. (1990). Review of the physical oceanography of the North Sea. Netherlands journal of sea research, 26(2-4), 161-238.

Palmer, M. R., Williams, C., Akpinar, A., Mahaffey, C., Hull, T., & Toberman, M. (2020). Altereco: An alternative framework to assess marine ecosystem functioning in shelf seas. EGU General Assembly Conference Abstracts (p. 18354). 22nd EGU General Assembly. doi:10.5194/egusphere-egu2020-18354

Paskyabi, M. B. (2015). Offshore Wind Farm Wake Effect on Stratification and Coastal Upwelling. in 12th Deep Sea Offshore Wind R&D Conference, EERA DeepWind’2015, 80, pp. 131–140. Trondheim.

Paskyabi, M. B., & Fer, I. (2012). Upper Ocean Response to Large Wind Farm Effect in the Presence of Surface Gravity Waves . in Selected papers from Deep Sea Offshore Wind R&D Conference, 24, pp. 245–254. Trondheim.

Peters, D. J., Shaw, C. J., Grant, C. K., Heideman, J. C., & Szabo, D. (1993). Modelling The North Sea Through The North European Storm Study. . Offshore Technology Conference.

Pezy, J. P., Raoux, A., & Dauvin, J. C. (2020). The environmental impact from an offshore windfarm: Challenge and evaluation methodology based on an ecosystem approach. Ecological Indicators, 114, 106302.

Pınarbaşı, K., Galparsoro, I., Depellegrin, D., Bald, J., Pérez-Morán, G., & Borja, Á. (2019). A modelling approach for offshore wind farm feasibility with respect to ecosystem-based marine spatial planning. Science of The Total Environment, 667, 306-317.

Queste, B. Y., Fernand, L., Jickells, T. D., Heywood, K. J., & Hind, A. J. (2016). Drivers of summer oxygen depletion in the central North Sea. Biogeosciences, 13(4), 1209-1222.

Qvarfordt, S., Kautsky, H., & Malm, T. (2006). Development of fouling communities on vertical structures in the Baltic Sea. Estuarine, Coastal and Shelf Science, 67(4), 618-628.

Raghukumar, K., Chartrand, C., Chang, G., Cheung, L., & Roberts, J. (2022). Effect of floating offshore wind turbines on atmospheric circulation in California. Frontiers in Energy Research, 10, 863995.

Raghukumar, K., Nelson, T., Jacox, M., & al, e. (2023). Projected cross-shore changes in upwelling induced by offshore wind farm development along the California coast. Communications Earth & Environment, 4(1), 116.

Redford, M., Rouse, S., Hayes, P., & Wilding, T. A. (2021). Benthic and Fish Interactions With Pipeline Protective Structures in the North Sea. Frontiers in Marine Science, 8(417).

Rennau, H., Schimmels, S., & Burchard, H. (2012). On the effect of structure-induced resistance and mixing on inflows into the Baltic Sea: a numerical model study. Coastal Engineering, 60, 53-68.

Robert, K., Jones, D. O., & Huvenne, V. A. (2014). Megafaunal distribution and biodiversity in a heterogeneous landscape: the iceberg-scoured Rockall Bank, NE Atlantic. Marine Ecology Progress Series, 501, 67-88.

Rudnick, D. L., Davis, R. E., Eriksen, C. C., Fratantoni, D. M., & Perry, M. J. (2004). Underwater gliders for ocean research. Marine Technology Society Journal, 38(2), 73-84.

Russell, D. J., Brasseur, S. M., Hastie, G. D., Janik, V. M., Aarts, G., McClintock, B. T., . . . McConnell, B. (2014). Marine mammals trace anthropogenic structures at sea. Current Biology, 24(14).

Schrum, C., Lowe, J., Meier, H. M., Grabemann, I., Holt, J., Mathis, M., . . . Wakelin, S. (2016). Projected Change—North Sea. In M. Quante, & F. (. Colijn, North Sea Region Climate Change Assessment (pp. 175-217). Springer, Cham.

Schultze, L. K., Merckelbach, L. M., Horstmann, J., Raasch, S., & Carpenter, J. R. (2020). Increased mixing and turbulence in the wake of offshore wind farm foundations. Journal of Geophysical Research, 125(8).

Scottish Government. (2010). Strategy/plan - Making the most of Scotland's seas: turning our marine vision into reality.

Scottish Government. (2020). Sectoral marine plan for offshore wind energy.

Scottish Government. (2024, March). Scottish Marine Energy Research Programme Physical Processes Evidence Map.

Sharples, J., Holt, J., & Wakelin, S. (2020). Impacts of climate change on shelf sea stratification, relevant to the coastal and marine environment around the UK. MCCIP Science Review 2020, 103-115.

Sharples, J., Ross, O. N., E, S. B., Greenstreet, S. P., & Fraser, H. (2006). Inter-annual variability in the timing of stratification and the spring bloom in the North-western North Sea. Continental Shelf Research, 26(6), 733-751.

Shaw, W., Berg, L., Debnath, M., Deskos, G., Draxl, C., Ghate, V., . . . Wilczak, J. (2022). Scientific challenges to characterizing the wind resource in the marine atmospheric boundary layer. Wind Energy Science Discussions, 1-47.

Shields, M. A., Woolf, D. K., Grist, E. P., Kerr, S. A., Jackson, A. C., Harris, R. E., . . . Side, J. (2011). Marine renewable energy: The ecological implications of altering the hydrodynamics of the marine environment. Ocean & coastal management, 54(1), 2-9.

Simpson, J. H., & Sharples, J. (2012). Introduction to the Physical and Biological Oceanography of Shelf Seas. Cambridge: Cambridge University Press.

Skliris, N., Marsh, R., Srokosz, M., Aksenov, Y., Rynders, S., & Fournier, N. (2021). Assessing Extreme Environmental Loads on Offshore Structures in the North Sea from High-Resolution Ocean Currents, Waves and Wind Forecasting. Journal of Marine Science and Engineering, 9(10), 1052.

Soares-Ramos, E. P., de Oliveira-Assis, L., Sarrias-Mena, R., & Fernández-Ramírez, L. M. (2020). Current status and future trends of offshore wind power in europe. Energy, 202, 117787.

Sun, X., Huang, D., & Wu, G. (2012). The current state of offshore wind energy technology development. Energy, 41, 298-312.

Sündermann, J., & Pohlmann, T. (2011). A brief analysis of North Sea physics. Oceanologia, 53(3), 663-689.

Sverdrup, H. U., Johnson, M. W., & Fleming, R. H. (1942). The Oceans: Their Physics, Chemistry, and General Biology. Prentice-Hall, New York.

Swallow, J. C. (1955). A neutral-buoyancy float for measuring deep currents. Deep Sea Research, 3(1), 74-81.

Tait, R., Allan, G., & McMillan, D. (2023). Offshore wind policies and local content: what can we learn from the UK’s experience? [poster session WindEurope 2023]. Copenhagen.

Thorpe, S. A. (2012). On the biological connectivity of oil and gas platforms in the North Sea. Marine Pollution Bulletin, 64(12), 2770-2781.

Tinker, J., Lowe, J., Pardaens, A., Holt, J., & Barciela, R. (2016). Uncertainty in climate projections for the 21st century northwest European shelf seas. Progress in Oceanography, 56-73.

Todd, V. L., Warley, J. C., & Todd, I. B. (2016). Meals on Wheels? A Decade of Megafaunal Visual and Acoustic Observations from Offshore Oil & Gas Rigs and Platforms in the North and Irish Seas. PLoS ONE, 11(4), e0153320.

Todd, V. L., Williamson, L. D., Cox, S. E., Todd, I. B., & Macreadie, P. I. (2019). Characterizing the first wave of fish and invertebrate colonization on a new offshore petroleum platform. ICES Journal of Marine Science, 77(3), 1127-1136.

Turrell, B., Hansen, B., Østerhus, S., Hughes, S., Ewart, K., & Hamilton, J. (1999). Direct observations of inflow to the Nordic Seas through the Faroe Shetland Channel . 1994-1997.

Turrell, W. R., Henderson, E. W., Slesser, G., Payne, R., & Adams, R. D. (1992). Seasonal changes in the circulation of the northern North Sea. . Continental Shelf Research, 12(2-3), 257-286.

UK Parliament. (2023, May 05). Energy Bill [HL] 2022-2023: Parts 11 and 12 - Offshore Wind, oil and gas.

United Nations. (2015). Sustainable Development Goals.

van Berkel, J., Burchard, H., Christensen, A., Mortensen, L. O., Petersen, O. S., & Thomsen, F. (2020). The effects of offshore wind farms on hydrodynamics and implications for fishes. Oceanography, 33(4), 108-117.

van der Molen, J., Smith, H. C., Lepper, P., Limpenny, S., & Rees, J. (2014). Predicting the large-scale consequences of offshore wind turbine array development on a North Sea ecosystem. Continental shelf research, 85, 60-72.

van Lancker, V., & Baeye, M. (2015). Wave glider monitoring of sediment transport and dredge plumes in a shallow marine sandbank environment. PloS one, 10(6), e0128948.

van Leeuwen, S., Tett, P., Mills, D., & van der Molen, J. (2015). Stratified and nonstratified areas in the N orth S ea: Long‐term variability and biological and policy implications. Journal of Geophysical Research: Oceans, 120(7), 4670-4686.

Vanhellemont, Q., & Ruddick, K. (2014). Turbid wakes associated with offshore wind turbines observed with Landsat 8. Remote Sensing of Environment, 145, 105-115.

Vindenes, H., Orvik, K. A., Søiland, H., & Wehde, H. (2018). Analysis of tidal currents in the North Sea from shipboard acoustic Doppler current profiler data. Continental shelf research, 1-12.

Wakelin, S. L., Artioli, Y., Butenschön, M., Allen, J. I., & Holt, J. T. (2015). Modelling the combined impacts of climate change and direct anthropogenic drivers on the ecosystem of the northwest European continental shelf. Journal of Marine Systems, 152, 51-63.

Wen, C., Dallimer, M., Carver, S., & Ziv, G. (2018). Valuing the visual impact of wind farms: A calculus method for synthesizing choice experiments studies. Sci. Total Environ., 637, 58-68.

Weston, K., Fernand, L., Mills, D., Delahunty, R., & Brown, J. (2005). Primary production in the deep chlorophyll maximum of the central north sea. J. Plankton Res., 27, 909-922.

Wilkinson, M. D., Dumontier, M., Aalbersberg, I. J., Appleton, G., Axton, M., Baak, A., . . . al, e. (2016). The FAIR Guiding Principles for scientific data management and stewardship. Scientific data, 3(1), 1-9.

Wynn, R. B., Huvenne, V. A., Le Bas, T. P., Murton, B. J., Connelly, D. P., Bett, B. J., . . . Hunt, J. E. (2014). Autonomous Underwater Vehicles (AUVs): Their past, present and future contributions to the advancement of marine geoscience. Marine geology, 352, 451-468.

Contact

Email: ScotMER@gov.scot

Back to top