Information

Scottish Marine and Freshwater Science Vol 6 No 15: Spatial dynamics of scallops in relation to the Orkney dive fishery. Report of Fishing Industry Science Alliance (FISA) Project 03/12

This report details the results of studies which have been done under Fishing Industry Science Alliance (FISA) project 03/12 which quantify the rate of spatial turnover in a scallop population at a small spatial scale in Orkney, and understanding the exte


Appendix 1

A Simple Maximum Likelihood Model for Depletion Fishing

For repeated passes over the same plot the expected catch number on each pass Ĉ i is a function of initial population size N and capture probabilities P i on each occasion ( i=1 to np):

Equation

Assuming a Poisson distribution, the total log-likelihood for catches over the np passes is:

Equation

This model has been implemented in the R statistical package (R Core Team, 2014) using the 'maxLik' library (Henningson & Toomet, 2011) for maximizing this log-likelihood and the 'numDeriv' library (Gilbert & Varadhan, 2012) to estimate numerical gradients and Hessian matrix. Initial population size and capture probabilities are constrained within feasible bounds by logarithmic and logistic transforms respectively. The next page shows an R script for fitting the model to the Wyre depletion data, with capture probability assumed to remain constant between passes. This code allows simultaneous estimation for multiple groups, with between-group constraints on capture probabilities defined through a GLM-like design matrix. Five models are shown defined in the code below:

(i) unconstrained estimation of model parameters separately for each group;

(ii) capture probability constrained to be an additive logistic function of size-group and fishing occasion effects;

(iii) capture probability constrained to be the same in each size-group but differing between occasions;

(iv) capture probability constrained to be the same on each occasion, but differing between size-groups; and

(v) capture probability constrained to be constant across occasions and size-groups.

Gilbert, P. & Varadhan, R., 2012. numDeriv: Accurate Numerical Derivatives. R package version 2012.9-1.

Henningsen, A. & Toomet, O., 2011. maxLik: A package for maximum likelihood estimation in R. Computational Statistics, 26, 443-458.

R Core Team, 2014. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.

R Script for Defining and Fitting Maximum Likelihood Depletion Models

##----------------------------------------------------------------

## MAXIMUM-LIKELIHOOD DEPLETION MODEL

##----------------------------------------------------------------

require(MASS) ## for generalized inverse function, ginv()

require(Matrix) ## for rankMatrix() function

require(maxLik) ## maximum likelihood estimation

require(numDeriv) ## numerical derivatives for gradient & Hessian

## N.B. numDeriv must be loaded AFTER maxLik so that hessian

## function from maxLik is masked by that from numDeriv rather

## than vice versa

##----------------------------------------------------------------

## POISSON LOG-LIKELIHOOD FUNCTION FOR A DEPLETION MODEL

## p[npp+ng] is the estimated parameter vector

## C[nr] is the catch vector

## Pdesign[nr,npp] is the design matrix for P parameters

## gt[nr,2] gives group and time qualifiers

## npp is the number of P parameters in the estimated vector

## nr is the number of data rows

## ng is the number of groups (populations)

## ntmax is the maximum number of passes for any population

##----------------------------------------------------------------

loglikDeplete<-function(p,C,Pdesign,gt,npp,nr,ng,ntmax)

{

##Extract P from estimated parameters

P<-matrix(nrow=ng,ncol=ntmax)

for(i in 1:nr) {

g<-gt[i,1]

t<-gt[i,2]

P[g,t]<-0

for(j in 1:npp) {

P[g,t]<-P[g,t]+Pdesign[i,j]*p[j]

}

P[g,t]<-1/(1+exp(-P[g,t]))

}

## Extract N from estimated parameters

N<-vector(length=ng)

for(i in 1:ng) {

N[i]<-exp(p[npp+i])

}

## form log-likelihood

LL<-0

for(i in 1:nr) {

g<-gt[i,1]

t<-gt[i,2]

nj<-t-1

Pprod<-1

if(nj>0){

for(j in 1:nj) {

Pprod<-Pprod*(1-P[g,j])

}

}

Cfit<-N[g]*Pprod*P[g,t]

LL<-LL+C[i]*log(Cfit)-Cfit

}

return(LL)

}

##----------------------------------------------------------------

## CALCULATE FITTED VALUES

## Same calculations as loglikDeplete, but returns fitted

## values of catch numbers rather than log-likelihood

##----------------------------------------------------------------

calcFit<-function(p,C,Pdesign,gt,npp,nr,ng,ntmax)

{

##Extract P from estimated parameters

P<-matrix(nrow=ng,ncol=ntmax)

for(i in 1:nr) {

g<-gt[i,1]

t<-gt[i,2]

P[g,t]<-0

for(j in 1:npp) {

P[g,t]<-P[g,t]+Pdesign[i,j]*p[j]

}

P[g,t]<-1/(1+exp(-P[g,t]))

}

## Extract N from estimated parameters

N<-vector(length=ng)

for(i in 1:ng) {

N[i]<-exp(p[npp+i])

}

## form log-likelihood

Cfit<-vector(length=nr)

for(i in 1:nr) {

g<-gt[i,1]

t<-gt[i,2]

nj<-t-1

Pprod<-1

if(nj>0){

for(j in 1:nj) {

Pprod<-Pprod*(1-P[g,j])

}

}

Cfit[i]<-N[g]*Pprod*P[g,t]

}

return(Cfit)

}

##----------------------------------------------------------------

## NUMERICAL GRADIENT OF THE LOG-LIKELIHOOD

##----------------------------------------------------------------

gradDeplete<-function(p,C,Pdesign,gt,npp,nr,ng,ntmax)

{

g<-grad(loglikDeplete,p,C=C,Pdesign=Pdesign,gt=gt,npp=npp,

nr=nr,ng=ng,ntmax=ntmax)

return(g)

}

##----------------------------------------------------------------

## NUMERICAL HESSIAN OF THE LOG-LIKELIHOOD

##----------------------------------------------------------------

hessDeplete<-function(p,C,Pdesign,gt,npp,nr,ng,ntmax)

{

h<-hessian(loglikDeplete,p,C=C,Pdesign=Pdesign,gt=gt,npp=npp,

nr=nr,ng=ng,ntmax=ntmax)

return(h)

}

##----------------------------------------------------------------

## FIT THE DEPLETION MODEL BY MAXIMUM LIKELIHOOD

## Returns dmod as object of class maxLike (estimated parameters

## are returned as component dmod$estimate)

## Returns var as covariance matrix

## Returns se as vector of standard errors for model parameters

## Returns NP as number of identifiable model parameters

## Returns AIC as Akaike Information Criterion

## Returns AICc as small sample AIC

##-----------------------------------------------------------------

FitDeplete<-function(p,C,Pdesign,gt,npp,nr,ng,ntmax)

{

## Fit the model

dmod<-maxLik(loglikDeplete,grad=gradDeplete,hess=hessDeplete,

start=p,method="BFGS",

C=C,Pdesign=Pdesign,gt=gt,npp=npp,nr=nr,ng=ng,

ntmax=ntmax)

## Get model fit statistics

var<-ginv(-dmod$hessian)

se<-sqrt(diag(var))

NP<-rankMatrix(dmod$hessian,method="maybeGrad")

attributes(NP)<-NULL ## strip the object down to a value

AIC<-(-2*dmod$maximum)+2*NP

AICc<-AIC+2*NP*(NP+1)/(length(C)-NP-1)

## Extract logit(P) estimates and SEs

logitP<-vector(length=nr)

SElogitP<-vector(length=nr)

for(i in 1:nr) {

g<-gt[i,1]

t<-gt[i,2]

logitP[i]<-0

SElogitP[i]<-0

for(j in 1:npp) {

logitP[i]<-logitP[i]+Pdesign[i,j]*dmod$estimate[j]

for(k in 1:npp) {

SElogitP[i]<-SElogitP[i]+Pdesign[i,j]*Pdesign[i,k]*var[j,k]

}

}

SElogitP[i]<-sqrt(SElogitP[i])

}

## Extract log(N) estimates and SEs

logN<-vector(length=ng)

SElogN<-vector(length=ng)

for(i in 1:ng) {

logN[i]<-dmod$estimate[npp+i]

SElogN[i]<-se[npp+i]

}

## Get the model deviance

LLsaturated<-0

for(i in 1:nr) {

if(C[i]>0) {

LLsaturated<-LLsaturated+C[i]*log(C[i])-C[i]

}

}

deviance<-2*LLsaturated-2*dmod$maximum

## Get the model fit

Cfit<-vector(length=nr)

Cfit<-calcFit(p=dmod$estimate,C=C,Pdesign=Pdesign,gt=gt,npp=npp,

nr=nr,ng=ng,ntmax=ntmax)

return(list(dmod=dmod,var=var,se=se,logitP=logitP,

SElogitP=SElogitP,logN=logN,SElogN=SElogN,

NP=NP,AIC=AIC,AICc=AICc,deviance=deviance,

Cfit=Cfit))

}

##-----------------------------------------------------------------

## DATA FOR WYRE EXPERIMENT

ng<-15 ## 5 occasions x 3 size groups

nr<-45 ## 15 groups x 3 passes per group

ntmax<-3 ## maximum of 3 passes

## Catch vector

C<-as.vector(c(41,15,13,

56,6,0,

76,6,4,

47,32,34,

53,15,10,

8,12,0,

57,21,3,

94,27,4,

11,5,1,

32,30,25,

112,43,12,

39,1,1,

10,31,9,

43,22,12,

12,2,2),

mode="numeric")

## Group and time qualifiers

gt<-matrix(c(1,1,

1,2,

1,3,

2,1,

2,2,

2,3,

3,1,

3,2,

3,3,

4,1,

4,2,

4,3,

5,1,

5,2,

5,3,

6,1,

6,2,

6,3,

7,1,

7,2,

7,3,

8,1,

8,2,

8,3,

9,1,

9,2,

9,3,

10,1,

10,2,

10,3,

11,1,

11,2,

11,3,

12,1,

12,2,

12,3,

13,1,

13,2,

13,3,

14,1,

14,2,

14,3,

15,1,

15,2,

15,3),

nrow=nr,ncol=2,byrow=TRUE)

##-----------------------------------------------------------------

## SET UP MODEL STRUCTURES - Size Group * Occasion

npp=15 ## P parameters for 15 populations

## Initial values for parameter estimates

## first 15 are logit(P), next 15 are log(N)

p<-as.vector(c(rep(0,15),rep(4,15)))

## Design matrix mapping estimated to structural parameters

Pdesign<-matrix(c(1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,1),

nrow=nr,ncol=npp,byrow=TRUE)

##-----------------------------------------------------------------

## RUN THE MODEL - Size Group * Occasion

DM1<-FitDeplete(p,C,Pdesign,gt,npp,nr,ng,ntmax)

##-----------------------------------------------------------------

## SET UP MODEL STRUCTURES - Size Group + Occasion

npp=7 ## P parameters

## Initial values for parameter estimates

## first 7 are logit(P), next 15 are log(N)

p<-as.vector(c(rep(0,7),rep(4,15)))

## Design matrix mapping estimated to structural parameters

Pdesign<-matrix(c(1,0,0,0,0,0,0,

1,0,0,0,0,0,0,

1,0,0,0,0,0,0,

1,0,0,0,0,1,0,

1,0,0,0,0,1,0,

1,0,0,0,0,1,0,

1,0,0,0,0,0,1,

1,0,0,0,0,0,1,

1,0,0,0,0,0,1,

0,1,0,0,0,0,0,

0,1,0,0,0,0,0,

0,1,0,0,0,0,0,

0,1,0,0,0,1,0,

0,1,0,0,0,1,0,

0,1,0,0,0,1,0,

0,1,0,0,0,0,1,

0,1,0,0,0,0,1,

0,1,0,0,0,0,1,

0,0,1,0,0,0,0,

0,0,1,0,0,0,0,

0,0,1,0,0,0,0,

0,0,1,0,0,1,0,

0,0,1,0,0,1,0,

0,0,1,0,0,1,0,

0,0,1,0,0,0,1,

0,0,1,0,0,0,1,

0,0,1,0,0,0,1,

0,0,0,1,0,0,0,

0,0,0,1,0,0,0,

0,0,0,1,0,0,0,

0,0,0,1,0,1,0,

0,0,0,1,0,1,0,

0,0,0,1,0,1,0,

0,0,0,1,0,0,1,

0,0,0,1,0,0,1,

0,0,0,1,0,0,1,

0,0,0,0,1,0,0,

0,0,0,0,1,0,0,

0,0,0,0,1,0,0,

0,0,0,0,1,1,0,

0,0,0,0,1,1,0,

0,0,0,0,1,1,0,

0,0,0,0,1,0,1,

0,0,0,0,1,0,1,

0,0,0,0,1,0,1),

nrow=nr,ncol=npp,byrow=TRUE)

##-----------------------------------------------------------------

## RUN THE MODEL - Size Group + Occasion

DM2<-FitDeplete(p,C,Pdesign,gt,npp,nr,ng,ntmax)

##-----------------------------------------------------------------

## SET UP MODEL STRUCTURES - Occasion

npp=5 ## P parameters

## Initial values for parameter estimates

## first 5 are logit(P), next 15 are log(N)

p<-as.vector(c(rep(0,5),rep(4,15)))

## Design matrix mapping estimated to structural parameters

Pdesign<-matrix(c(1,0,0,0,0,

1,0,0,0,0,

1,0,0,0,0,

1,0,0,0,0,

1,0,0,0,0,

1,0,0,0,0,

1,0,0,0,0,

1,0,0,0,0,

1,0,0,0,0,

0,1,0,0,0,

0,1,0,0,0,

0,1,0,0,0,

0,1,0,0,0,

0,1,0,0,0,

0,1,0,0,0,

0,1,0,0,0,

0,1,0,0,0,

0,1,0,0,0,

0,0,1,0,0,

0,0,1,0,0,

0,0,1,0,0,

0,0,1,0,0,

0,0,1,0,0,

0,0,1,0,0,

0,0,1,0,0,

0,0,1,0,0,

0,0,1,0,0,

0,0,0,1,0,

0,0,0,1,0,

0,0,0,1,0,

0,0,0,1,0,

0,0,0,1,0,

0,0,0,1,0,

0,0,0,1,0,

0,0,0,1,0,

0,0,0,1,0,

0,0,0,0,1,

0,0,0,0,1,

0,0,0,0,1,

0,0,0,0,1,

0,0,0,0,1,

0,0,0,0,1,

0,0,0,0,1,

0,0,0,0,1,

0,0,0,0,1),

nrow=nr,ncol=npp,byrow=TRUE)

##-----------------------------------------------------------------

## RUN THE MODEL - Occasion

DM3<-FitDeplete(p,C,Pdesign,gt,npp,nr,ng,ntmax)

##-----------------------------------------------------------------

## SET UP MODEL STRUCTURES - Size Group

npp=3 ## P parameters

## Initial values for parameter estimates

## first 3 are logit(P), next 15 are log(N)

p<-as.vector(c(rep(0,3),rep(4,15)))

## Design matrix mapping estimated to structural parameters

Pdesign<-matrix(c(1,0,0,

1,0,0,

1,0,0,

0,1,0,

0,1,0,

0,1,0,

0,0,1,

0,0,1,

0,0,1,

1,0,0,

1,0,0,

1,0,0,

0,1,0,

0,1,0,

0,1,0,

0,0,1,

0,0,1,

0,0,1,

1,0,0,

1,0,0,

1,0,0,

0,1,0,

0,1,0,

0,1,0,

0,0,1,

0,0,1,

0,0,1,

1,0,0,

1,0,0,

1,0,0,

0,1,0,

0,1,0,

0,1,0,

0,0,1,

0,0,1,

0,0,1,

1,0,0,

1,0,0,

1,0,0,

0,1,0,

0,1,0,

0,1,0,

0,0,1,

0,0,1,

0,0,1),

nrow=nr,ncol=npp,byrow=TRUE)

##-----------------------------------------------------------------

## RUN THE MODEL - Size Group

DM4<-FitDeplete(p,C,Pdesign,gt,npp,nr,ng,ntmax)

##-----------------------------------------------------------------

## SET UP MODEL STRUCTURES - Constant P

npp=1 ## P parameters

## Initial values for parameter estimates

## first 1 is logit(P), next 15 are log(N)

p<-as.vector(c(0,rep(4,15)))

## Design matrix mapping estimated to structural parameters

Pdesign<-matrix(c(rep(1,45)),

nrow=nr,ncol=npp,byrow=TRUE)

##-----------------------------------------------------------------

## RUN THE MODEL - Constant P

DM5<-FitDeplete(p,C,Pdesign,gt,npp,nr,ng,ntmax)

Contact

Back to top