Sectoral Marine Plan: roadmap of actions

Road map of actions required to improve our understanding of the potential implications of ScotWind sites on seabirds as identified by the Sectoral Marine Plan.


6 References

Alerstam, T., Rosén, M., Bäckman, J., Ericson, P. G. P., & Hellgren, O. (2007). Flight Speeds among Bird Species: Allometric and Phylogenetic Effects. PLoS Biology, 5(8), e197. https://doi.org/10.1371/journal.pbio.0050197

Band, B. (2012a). Using a collision risk model to assess bird collision risks for offshore wind farms. Retrieved August 23, 2017, from https://www.bto.org/sites/default/files/u28/downloads/Projects/Final_Report_SOSS02_Band1ModelGuidance.pdf

Band, B. (2012b). Using a collsion risk model to assess bird collision risks for offshore windfarms - with extended method: worked example.

Band, W., Madders, M., & Whitfield, D. P. (2007). Developing field and analytical methods to assess avian collision risk at Wind Farms. In M. de Lucas, G. F. E. Janss, & M. Ferrer (Eds.), Birds and wind farms: risk assessment and mitigation. Madrid: Quercus.

Begg, A. G. S., Reid, J. B., Tasker, M. L., Webb, a, & Waterbirds, S. C. (2013). Assessing the Vulnerability of Seabirds to Oil Pollution : Sensitivity to Spatial Scale Assessing the Vulnerability of Seabirds to Oil Pollution : Sensitivity to Spatial Scale. Colonial Waterbirds, 20(2), 339–352.

Bogdanova, M. I., Wanless, S., Harris, M. P., Lindström, J., Butler, A., Newell, M. A., … Daunt, F. (2014). Among-year and within-population variation in foraging distribution of European shags Phalacrocorax aristotelis over two decades: Implications for marine spatial planning. Biological Conservation, 170, 292–299. https://doi.org/10.1016/J.BIOCON.2013.12.025

BOLTON, M. (2021). GPS tracking reveals highly consistent use of restricted foraging areas by European Storm-petrels Hydrobates pelagicus breeding at the largest UK colony: implications for conservation management. Bird Conservation International, 31(1), 35–52. https://doi.org/10.1017/S0959270920000374

Bowgen, K., & Cook, A. S. C. P. (2018). Bird collision avoidance: Empirical evidence and impact assessments. BTO Report to JNCC.

Bradbury, G., Trinder, M., Furness, B., Banks, A. N., Caldow, R. W. G., & Hume, D. (2014). Mapping Seabird Sensitivity to offshore wind farms. PLoS ONE, 9(9). https://doi.org/10.1371/journal.pone.0106366

Buckingham, L., Bogdanova, M., Green, J., Dunn, R., Wanless, S., Bennett, S., … Daunt, F. (2021). Interspecific variation in non-breeding aggregation: a multi-colony tracking study of two sympatric seabirds. Marine Ecology Progress Series. https://doi.org/10.3354/MEPS13960

Buckland, S. T., Burt, M. L., Rexstad, E. A., Mellor, M., Williams, A. E., & Woodward, R. (2012). Aerial surveys of seabirds: the advent of digital methods. Journal of Applied Ecology, 49(4), 960–967. https://doi.org/10.1111/j.1365-2664.2012.02150.x

Burthe, S., Wanless, S., Newell, M., Butler, A., & Daunt, F. (2014). Assessing the vulnerability of the marine bird community in the western North Sea to climate change and other anthropogenic impacts. Marine Ecology Progress Series, 507, 277–295. https://doi.org/10.3354/meps10849

Busch, M., & Garthe, S. (2016). Approaching population thresholds in presence of uncertainty: Assessing displacement of seabirds from offshore wind farms. Environmental Impact Assessment Review, 56, 31–42. https://doi.org/10.1016/j.eiar.2015.08.007

Busch, M., & Garthe, S. (2017). Looking at the bigger picture: the importance of considering annual cycles in impact assessments illustrated in a migratory seabird species. ICES Journal of Marine Science. https://doi.org/10.1093/icesjms/fsx170

Butler, A., Carroll, M., Searle, K., Bolton, M., Waggitt, J., Evans, P., … Daunt, F. (2020). Attributing seabirds at sea to appropriate breeding colonies and populations. Scottish Marine and Freshwater Science, 11(8).

Chamberlain, D. E., Rehfisch, M. R., Fox, A. D., Desholm, M., & Anthony, S. J. (2006). The effect of avoidance rates on bird mortality predictions made by wind turbine collision risk models. Ibis, 148(s1), 198–202. https://doi.org/10.1111/j.1474-919X.2006.00507.x

Cleasby, I. R., Owen, E., Wilson, L., Wakefield, E. D., O'Connell, P., & Bolton, M. (2020). Identifying important at-sea areas for seabirds using species distribution models and hotspot mapping. Biological Conservation, 241, 108375. https://doi.org/10.1016/j.biocon.2019.108375

Cleasby, I. R., Wakefield, E. D., Bearhop, S., Bodey, T. W., Votier, S. C., & Hamer, K. C. (2015). Three-dimensional tracking of a wide-ranging marine predator: flight heights and vulnerability to offshore wind farms. Journal of Applied Ecology, 52(6), 1474–1482. https://doi.org/10.1111/1365-2664.12529

Cook, A. S. C. P. (2021). Additional analysis to inform SNCB recommendations regarding collision risk modelling. Thetford. Retrieved from https://bto.org/our-science/publications/research-reports/additional-analysis-inform-sncb-recommendations-regarding

Cook, A.S.C.P., & Robinson, R. A. (2017). Towards a framework for quantifying the population-level consequences of anthropogenic pressures on the environment: The case of seabirds and windfarms. Journal of Environmental Management, 190. https://doi.org/10.1016/j.jenvman.2016.12.025

Cook, A.S.C.P., Ward, R. M., Hansen, W. S., & Larsen, L. (2018). Estimating Seabird Flight Height Using LiDAR. Scottish Marine and Freshwater Science, 9(14). Retrieved from https://data.marine.gov.scot/dataset/estimating-seabird-flight-height-using-lidar

Cook, A S C P, Humphreys, E. M., Masden, E. A., & Burton, N. H. K. (2014). The Avoidance Rates of Collision Between Birds and Offshore Turbines. Edinburgh. Retrieved from http://www.gov.scot/Resource/0046/00464979.pdf

Cook, Aonghais S.C.P., Humphreys, E. M., Bennet, F., Masden, E. A., & Burton, N. H. K. (2018). Quantifying avian avoidance of offshore wind turbines: Current evidence and key knowledge gaps. Marine Environmental Research, 140, 278–288. https://doi.org/10.1016/J.MARENVRES.2018.06.017

Cook, Aonghais S.C.P., Humphreys, E. M., Robinson, R. A., & Burton, N. H. K. (2019). Review of the potential of seabird colony monitoring to inform monitoring programmes for consented offshore wind farm projects. BTO Research Report No. 712. Thetford. Retrieved from https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/809454/BTO_2019_Seabird_colony_monitoring_and_offshore_renewables.pdf

Deakin, Z., Cook, A., Daunt, F., McCluskie, A., Morley, N., Witcutt, E., Wright, L., Bolton, M. (2022) A review to inform the assessment of the risk of collision and displacement in petrels and shearwaters from offshore wind developments in Scotland. Report to Scottish Government.

Dean, B., Kirk, H., Fayet, A., Shoji, A., Freeman, R., Leonard, K., … Guilford, T. (2015). Simultaneous multi-colony tracking of a pelagic seabird reveals cross-colony utilization of a shared foraging area. Marine Ecology Progress Series, 538, 239–248. https://doi.org/10.3354/meps11443

Dierschke, V., Furness, R. W., & Garthe, S. (2016, October). Seabirds and offshore wind farms in European waters: Avoidance and attraction. Biological Conservation. Elsevier Ltd. https://doi.org/10.1016/j.biocon.2016.08.016

Donovan, C. R., Caneco, B. A. R. (2020) Seabird Survey Designs for the East Coast of Scotland. Scottish Marine and Freshwater Science Vol 11 No 19, 78pp. http://doi.org/10.7489/12335-1

Duckworth, J., Johnson, L., Petersen, A., Väisänen, I. K., Williams, William, J., & O'brien, S. &. (2018). Red-throated Diver Energetics Project: Preliminary Results from 2018/19. Retrieved from http://jncc.defra.gov.uk/default.aspx?page=6675.

Dunn, R. E., Wanless, S., Daunt, F., Harris, M. P., & Green, J. A. (2020). A year in the life of a North Atlantic seabird: behavioural and energetic adjustments during the annual cycle. Scientific Reports 2020 10:1, 10(1), 1–11. https://doi.org/10.1038/s41598-020-62842-x

Fijn, R. C., & Gyimesi, A. (2018). Behaviour related flight speeds of Sandwich Terns and their implications for wind farm collision rate modelling and impact assessment. Environmental Impact Assessment Review, 71, 12–16. https://doi.org/10.1016/J.EIAR.2018.03.007

Fijn, R. C., Krijgsveld, K. L., Poot, M. J. M., & Dirksen, S. (2015). Bird movements at rotor heights measured continuously with vertical radar at a Dutch offshore wind farm. Ibis, 157(3). https://doi.org/10.1111/ibi.12259

Fort, J., Steen, H., Strøm, H., Tremblay, Y., Grønningsæter, E., Pettex, E., … Grémillet, D. (2013). Energetic consequences of contrasting winter migratory strategies in a sympatric Arctic seabird duet. Journal of Avian Biology, 44(3), 255–262. https://doi.org/10.1111/J.1600-048X.2012.00128.X

Frederiksen, M., Wanless, S., Harris, M. P., Rothery, P., & Wilson, L. J. (2004). The role of industrial fisheries and oceanographic change in the decline of North Sea black-legged kittiwakes. Journal of Applied Ecology, 41(6), 1129–1139. https://doi.org/10.1111/j.0021-8901.2004.00966.x

Furness, R. W. (2015). Non-breeding season populations of seabirds in UK waters: Population sizes for biologically defined minimum population scales (BDMPS).

Furness, Robert W., Wade, H. M., & Masden, E. A. (2013). Assessing vulnerability of marine bird populations to offshore wind farms. Journal of Environmental Management, 119, 56–66. https://doi.org/10.1016/j.jenvman.2013.01.025

Garthe, S., & Hüppop, O. (2004). Scaling possible adverse effects of marine wind farms on seabirds: developing and applying a vulnerability index. Journal of Applied Ecology, 41(4), 724–734.

Gremillet, D., Wright, G., Lauder, A. N., Carss, D. N., & Wanless, S. (2003). Modelling the daily food requirements of wintering great cormorants: A bioenergetics tool for wildlife management. Journal of Applied Ecology, 40(2), 266–277. https://doi.org/10.1046/j.1365-2664.2003.00806.x

Hanlon, O. ', Wischnewski, S., Newman, K., Gunn, C., Jones, E. L., Newell, M., … Robinson, &. (2021). Feasibility study of large-scale deployment of colour-ringing on Black-legged Kittiwake populations to improve the realism of demographic models assessing the population impacts of offshore wind farms. Retrieved from https://jncc.gov.uk/

Harwood, A. J. P., Perrow, M. R., & Berridge, R. J. (2018). Use of an optical rangefinder to assess the reliability of seabird flight heights from boat-based surveyors: implications for collision risk at offshore wind farms. Journal of Field Ornithology. https://doi.org/10.1111/jofo.12269

Hayes, M. A., Hooton, L. A., Gilland, K. L., Grandgent, C., Smith, R. L., Lindsay, S. R., … Goodrich‐Mahoney, J. (2019). A smart curtailment approach for reducing bat fatalities and curtailment time at wind energy facilities. Ecological Applications, e01881. https://doi.org/10.1002/eap.1881

Horswill, C., Humphreys, E. M., & Robinson, R. A. (2018). When is enough … enough? Effective sampling protocols for estimating the survival rates of seabirds with mark-recapture techniques. Bird Study, 65(3), 290–298. https://doi.org/10.1080/00063657.2018.1516191

Horswill, Cat, Manica, A., Daunt, F., Newell, M., Wanless, S., Wood, M., & Matthiopoulos, J. (2021). Improving assessments of data-limited populations using life-history theory. Journal of Applied Ecology, 58(6), 1225–1236. https://doi.org/10.1111/1365-2664.13863

Horswill, Catharine, & Robinson, R. A. (2015). JNCC Report No: 552 Review of Seabird Demographic Rates and Density Dependence British Trust for Ornithology.

Humphreys, E. M., Masden, E. A., Cook, A. S. C. P., & Pearce-Higgins, J. W. (2016). Review of Cumulative Impact Assessments in the context of the onshore wind farm industry.

Inger, R., Attrill, M. J., Bearhop, S., Broderick, A. C., James Grecian, W., Hodgson, D. J., … Godley, B. J. (2009). Marine renewable energy: potential benefits to biodiversity? An urgent call for research. Journal of Applied Ecology, 46(6), 1145–1153. https://doi.org/10.1111/j.1365-2664.2009.01697.x

Johnston, A., & Cook, A. S. C. P. (2016). How high do birds fly? Development of methods and analysis of digital aerial data of seabird flight heights. BTO Research Report No. 676. Thetford. Retrieved from https://www.bto.org/research-data-services/publications/research-reports/2016/how-high-do-birds-fly-development-methods

Johnston, A., Cook, A. S. C. P., Wright, L. J., Humphreys, E. M., & Burton, N. H. K. (2014). Modelling flight heights of marine birds to more accurately assess collision risk with offshore wind turbines. Journal of Applied Ecology, 51(1), 31–41. https://doi.org/10.1111/1365-2664.12191

Johnston, D., Thaxter, C., Boersch-Supan, P., Humphreys, E., Bouten, W., Clewley, G., … Cook, A. (2021). Investigating avoidance and attraction responses in lesser black-backed gulls Larus fuscus to offshore wind farms. Marine Ecology Progress Series. https://doi.org/10.3354/MEPS13964

Kleyheeg-Hartman, J. C., Krijgsveld, K. L., Collier, M. P., Poot, M. J. M., Boon, A. R., Troost, T. A., & Dirksen, S. (2018). Predicting bird collisions with wind turbines: Comparison of the new empirical Flux Collision Model with the SOSS Band model. Ecological Modelling, 387, 144–153. https://doi.org/10.1016/J.ECOLMODEL.2018.06.025

Lane, J. V., Jeavons, R., Deakin, Z., Sherley, R. B., Pollock, C. J., Wanless, R. J., & Hamer, K. C. (2020). Vulnerability of northern gannets to offshore wind farms; seasonal and sex-specific collision risk and demographic consequences. Marine Environmental Research, 162, 105196. https://doi.org/10.1016/J.MARENVRES.2020.105196

Langton, R., Davies, I. M., & Scott, B. E. (2014). A simulation model coupling the behaviour and energetics of a breeding central place forager to assess the impact of environmental changes. Ecological Modelling, 273, 31–43. https://doi.org/10.1016/j.ecolmodel.2013.10.030

Largey, N., Cook, A. S. C. P., Thaxter, C. B., McCluskie, A., Stokke, Bå. G., Wilson, B., & Masden, E. A. (2021). Methods to quantify avian airspace use in relation to wind energy development. Ibis. Blackwell Publishing Ltd. https://doi.org/10.1111/ibi.12913

Marine Management Organisation. (2014). Review of post-consent offshore wind farm monitoring data associated with licence conditions.

Masden, E. A. (2015). Developing an avian collision risk model to incorporate variability and uncertainty. Edinburgh: Scottish Government.

Masden, E. A., & Cook, A. S. C. P. (2016). Avian collision risk models for wind energy impact assessments. Environmental Impact Assessment Review, 56, 43–49. https://doi.org/10.1016/j.eiar.2015.09.001

Masden, E. A., Cook, A. S. C. P., McCluskie, A., Bouten, W., Burton, N. H. K., & Thaxter, C. B. (2021). When speed matters: The importance of flight speed in an avian collision risk model. Environmental Impact Assessment Review, 90, 106622. https://doi.org/10.1016/j.eiar.2021.106622

Masden, E. A., Reeve, R., Desholm, M., Fox, A. D., Furness, R. W., Haydon, D. T., … Coles, C. F. (2012). Assessing the impact of marine wind farms on birds through movement modelling. Journal of the Royal Society, Interface / the Royal Society, 9(74), 2120–2130. https://doi.org/10.1098/rsif.2012.0121

Matthiopoulos, J., Wakefield, E., Jeglinski, J. W. E., Furness, R. W., Trinder, M., Tyler, G., … Evans, T. (2022). Integrated modelling of seabird-habitat associations from multi-platform data: A review. Journal of Applied Ecology. https://doi.org/10.1111/1365-2664.14114

May, R., Nygård, T., Falkdalen, U., Åström, J., Hamre, Ø., & Stokke, B. G. (2020). Paint it black: Efficacy of increased wind turbine rotor blade visibility to reduce avian fatalities. Ecology and Evolution, ece3.6592. https://doi.org/10.1002/ece3.6592

McGregor, R. M., King, S., Donovan, C. R., Caneco, B., & Webb, A. (2018). A Stochastic Collision Risk Model for Seabirds in Flight. Marine Scotland.

McKnight, A., Irons, D. B., Loftin, C. S., McKinney, S. T., & Olsen, B. J. (2020). Combined influence of intrinsic and environmental factors in shaping productivity in a small pelagic gull, the black-legged kittiwake Rissa tridactyla. Marine Ecology Progress Series, 633, 207–223. https://doi.org/10.3354/MEPS13162

Mendel, B., Schwemmer, P., Peschko, V., Müller, S., Schwemmer, H., Mercker, M., & Garthe, S. (2019). Operational offshore wind farms and associated ship traffic cause profound changes in distribution patterns of Loons (Gavia spp.). Journal of Environmental Management, 231, 429–438. https://doi.org/10.1016/J.JENVMAN.2018.10.053

Miller, J. A. O., Furness, R. W., Trinder, M., & Matthiopoulos, J. (2019). The sensitivity of seabird populations to density-dependence, environmental stochasticity and anthropogenic mortality. Journal of Applied Ecology, 56(9), 2118–2130. https://doi.org/10.1111/1365-2664.13448

Péron, G., Calabrese, J. M., Duriez, O., Fleming, C. H., García-Jiménez, R., Johnston, A., … Shepard, E. L. C. (2020). The challenges of estimating the distribution of flight heights from telemetry or altimetry data. Animal Biotelemetry, 8(1), 1–13. https://doi.org/10.1186/s40317-020-00194-z

Peschko, V., Mendel, B., Mercker, M., Dierschke, J., & Garthe, S. (2020). Northern gannets (Morus bassanus) are strongly affected by operating offshore wind farms during the breeding season. Journal of Environmental Management, 111509. https://doi.org/10.1016/j.jenvman.2020.111509

Peschko, V., Mendel, B., Mercker, M., Dierschke, J., & Garthe, S. (2021). Northern gannets (Morus bassanus) are strongly affected by operating offshore wind farms during the breeding season. Journal of Environmental Management, 279, 111509. https://doi.org/10.1016/j.jenvman.2020.111509

Peschko, V., Mercker, M., & Garthe, S. (2020). Telemetry reveals strong effects of offshore wind farms on behaviour and habitat use of common guillemots (Uria aalge) during the breeding season. Marine Biology, 167(8), 118. https://doi.org/10.1007/s00227-020-03735-5

Reynolds, T. J., Harris, M. P., King, R., Swann, R. L., Jardine, D. C., Frederiksen, M., & Wanless, S. (2011). Among-colony synchrony in the survival of Common Guillemots Uria aalge reflects shared wintering areas. Ibis, 153(4), 818–831. https://doi.org/10.1111/j.1474-919X.2011.01149.x

Rice, W. S., Sowman, M. R., & Bavinck, M. (2020). Using Theory of Change to improve post‐2020 conservation: A proposed framework and recommendations for use. Conservation Science and Practice, 2(12). https://doi.org/10.1111/CSP2.301

Robertson, G. S., Bolton, M., Grecian, W. J., & Monaghan, P. (2014). Inter- and intra-year variation in foraging areas of breeding kittiwakes (Rissa tridactyla). Marine Biology 2014 161:9, 161(9), 1973–1986. https://doi.org/10.1007/S00227-014-2477-8

Ross-Smith, V. H., Thaxter, C. B., Masden, E. A., Shamoun-Baranes, J., Burton, N. H. K., Wright, L. J., … Johnston, A. (2016). Modelling flight heights of lesser black-backed gulls and great skuas from GPS: a Bayesian approach. Journal of Applied Ecology, 53(6), 1676–1685. https://doi.org/10.1111/1365-2664.12760

Rush, G. P., Clarke, L. E., Stone, M., & Wood, M. J. (2018). Can drones count gulls? Minimal disturbance and semiautomated image processing with an unmanned aerial vehicle for colony-nesting seabirds. Ecology and Evolution, 8(24), 12322–12334. https://doi.org/10.1002/ECE3.4495

Schwemmer, P., Mendel, B., Sonntag, N., Dierschke, V., & Garthe, S. (2011). Effects of ship traffic on seabirds in offshore waters: Implications for marine conservation and spatial planning. Ecological Applications, 21(5), 1851–1860. https://doi.org/10.1890/10-0615.1

Scott, B. E., Sharples, J., Ross, O. N., Wang, J., Pierce, G. J., & Camphuysen, C. J. (2010). Sub-surface hotspots in shallow seas: Fine-scale limited locations of top predator foraging habitat indicated By tidal mixing and sub-surface chlorophyll. Marine Ecology Progress Series, 408, 207–226. https://doi.org/10.3354/meps08552

Scottish Government (2020) Sectoral Marine Plan for Offshore Wind Energy. https://www.gov.scot/binaries/content/documents/govscot/publications/strategy-plan/2020/10/sectoral-marine-plan-offshore-wind-energy/documents/sectoral-marine-plan-offshore-wind-energy/sectoral-marine-plan-offshore-wind-energy/govscot%3Adocument/sectoral-marine-plan-offshore-wind-energy.pdf

Searle, K., Butler, A., Mobbs, D., Trinder, M., McGregor, R., Cook, A., … Daunt, F. (n.d.). Study to examine how seabird collision risk, displacement and barrier effects could be integrated for assessment of offshore wind developments.

Searle, K., Mobbs, D. C., Daunt, F., & Butler, A. (2019). Population Viability Analysis Modelling Tool for Seabird Species. Natural England Commissioned Reports, Number 274. Peterborough. Retrieved from http://publications.naturalengland.org.uk/publication/4926995073073152

Searle, K., Waggitt, J., Evans, P., Bogdanova, M., Daunt, F., & Butler, A. (n.d.). Study to examine the impact of climate change on seabird species off the east coast of Scotland and potential implications for environmental assessments.

Searle, K, Mobbs, D. C., Butler, A., Furness, R. W., Trinder, M., & Daunt, F. (2018). Finding out the fate of displaced birds. Edinburgh. Retrieved from https://data.marine.gov.scot/sites/default/files/SMFS%200908%20%282%29.pdf

Searle, Kate, Butler, A., Mobbs, D., Bogdanova, M., Waggitt, J., Evans, P., … Daunt, F. (2019). Offshore ReDevelopment of a "Seabird Sensitivity Mapping Tool for Scotland."

Skov, H., Heinänen, S., Norman, T., Ward, R. M., & Méndez-Roldán, S. Ellis, I. (2018). ORJIP Bird Collision and Avoidance Study. Final report. United Kingdom.

St. John Glew, K., Wanless, S., Harris, M. P., Daunt, F., Erikstad, K. E., Strøm, H., … Trueman, C. N. (2019). Sympatric Atlantic puffins and razorbills show contrasting responses to adverse marine conditions during winter foraging within the North Sea. Movement Ecology 2019 7:1, 7(1), 1–14. https://doi.org/10.1186/S40462-019-0174-4

St John Glew, K., Wanless, S., Harris, M., Daunt, F., Erikstad, K., Strøm, H., & Trueman, C. (2018). Moult location and diet of auks in the North Sea inferred from coupled light-based and isotopebased geolocation. Marine Ecology Progress Series, 599, 239–251. https://doi.org/10.3354/meps12624

Sydeman, W. J., Schoeman, D. S., Thompson, S. A., Hoover, B. A., García-Reyes, M., Daunt, F., … Watanuki, Y. (2021). Hemispheric asymmetry in ocean change and the productivity of ecosystem sentinels. Science, 372(6545), 980–983. https://doi.org/10.1126/SCIENCE.ABF1772

Sydeman, William J., Thompson, S. A., Anker-Nilssen, T., Arimitsu, M., Bennison, A., Bertrand, S., … Zador, S. (2017). Best practices for assessing forage fish fisheries-seabird resource competition. Fisheries Research, 194, 209–221. https://doi.org/10.1016/J.FISHRES.2017.05.018

Taylor, P. D., Crewe, T. L., Mackenzie, S. A., Lepage, D., Aubry, Y., Crysler, Z., … Woodworth, B. K. (2017a). The motus wildlife tracking system: A collaborative research network to enhance the understanding of wildlife movement. Avian Conservation and Ecology, 12(1). https://doi.org/10.5751/ACE-00953-120108

Taylor, P. D., Crewe, T. L., Mackenzie, S. A., Lepage, D., Aubry, Y., Crysler, Z., … Woodworth, B. K. (2017b). The Motus Wildlife Tracking System: a collaborative research network to enhance the understanding of wildlife movement. Avian Conservation and Ecology, 12(1), art8. https://doi.org/10.5751/ACE-00953-120108

Thaxter, C. B., Johnston, D. T., Clewley, G. D., Humphreys, E. M., & Cook, A. S. C. . (2019). Improving our understanding of seabird behaviour at sea.

Thaxter, C. B., Ross-Smith, V. H., Bouten, W., Masden, E. A., Clark, N. A., Conway, G. J., … Burton, N. H. K. (2018). Dodging the blades: new insights into three-dimensional area use of offshore wind farms by lesser black-backed gulls Larus fuscus. Marine Ecology Progress Series, 587, 247–253. https://doi.org/10.3354/meps12415

Thaxter, Chris B., Lascelles, B., Sugar, K., Cook, A. S. C. P., Roos, S., Bolton, M., … Burton, N. H. K. (2012). Seabird foraging ranges as a preliminary tool for identifying candidate Marine Protected Areas. Biological Conservation, 156, 53–61. https://doi.org/10.1016/j.biocon.2011.12.009

Thaxter, Chris B., Ross-Smith, V. H., Bouten, W., Clark, N. A., Conway, G. J., Rehfisch, M. M., & Burton, N. H. K. (2015). Seabird-wind farm interactions during the breeding season vary within and between years: A case study of lesser black-backed gull Larus fuscus in the UK. Biological Conservation, 186, 347–358. https://doi.org/10.1016/j.biocon.2015.03.027

Tjomlov, R. S., Skov, H., Armitage, M., Barker, M., Cuttat, F., & Thomas, K. (2021). Resolving key uncertainties of seabird flight and avoidance behaviours at offshore wind farms. Annual Report for April 2020 to October 2020. Report to AOWFL.

Waggitt, J. J., Evans, P. G. H., Andrade, J., Banks, A. ., Boisseau, O., Bolton, M., … Hiddink, J. G. (2019). Distribution maps of cetacean and seabird populations in the North‐East Atlantic. Journal of Applied Ecology, 1365-2664.13525. https://doi.org/10.1111/1365-2664.13525

Wakefield, E. D., Bodey, T. W., Bearhop, S., Blackburn, J., Colhoun, K., Davies, R., … Hamer, K. C. (2013). Space partitioning without territoriality in gannets. Science (New York, N.Y.), 341(6141), 68–70. https://doi.org/10.1126/science.1236077

Wakefield, E. D., Owen, E., Baer, J., Carroll, M. J., Daunt, F., Dodd, S. G., … Bolton, M. (2017a). Breeding density, fine-scale tracking, and large-scale modeling reveal the regional distribution of four seabird species. Ecological Applications, 27(7), 2074–2091. https://doi.org/10.1002/eap.1591

Wakefield, E. D., Owen, E., Baer, J., Carroll, M. J., Daunt, F., Dodd, S. G., … Bolton, M. (2017b). Breeding density, fine-scale tracking, and large-scale modeling reveal the regional distribution of four seabird species. Ecological Applications, 27(7), 2074–2091. https://doi.org/10.1002/eap.1591

Woodward, I., Thaxter, C. B., Owen, E., & Cook, A. S. C. P. (2019). Desk-based revision of seabird foraging ranges used for HRA screening.

Youngflesh, C., Jones, F. M., Lynch, H. J., Arthur, J., Ročkaiová, Z., Torsey, H. R., & Hart, T. (2021). Large-scale assessment of intra- and inter-annual breeding success using a remote camera network. Remote Sensing in Ecology and Conservation, 7(1), 97–108. https://doi.org/10.1002/RSE2.171

Contact

Email: ScotMER@gov.scot

Back to top