Feasibility of extending SeabORD to the entire breeding season: study
SeabORD is a method that can assess displacement and barrier effects from offshore renewables on seabirds, but is currently limited to four species during the chick-rearing season. This review examined ways to improve the SeabORD model including extending to the entire breeding season.
References
Aarts, G., Fieberg, J., & Matthiopoulos, J. (2012). Comparative interpretation of count, presence-absence and point methods for species distribution models. Methods in Ecology and Evolution, 3(1), 177–187. https://doi.org/10.1111/j.2041-210X.2011.00141.x
Aarts, G., MacKenzie, M., McConnell, B., Fedak, M., & Matthiopoulos, J. (2008). Estimating space-use and habitat preference from wildlife telemetry data. Ecography, 31(1), 140–160. https://doi.org/10.1111/j.2007.0906-7590.05236.x
Anderson, H. B., P. G. H. Evans, J. M. Potts, M. P. Harris, and S. Wanless. 2014. The diet of Common Guillemot Uria aalge chicks provides evidence of changing prey communities in the North Sea. Ibis 156:23-34.
Anderson, D. J. (1982). The Home Range: A New Nonparametric Estimation. Ecology, 63(1), 103–112. https://doi.org/10.2307/1937036
Andrianakis, I., Vernon, I.R., McCreesh, N., McKinley, T. J., Oakley, J.E., Nsubuga, R.N., Goldstein, M. & White, R.G. (2015) Bayesian history matching of complex infectious disease models using emulation: a tutorial and a case study on HIV in Uganda. PLOS Computational Biology. 11 (1): e1003968. Bibcode:2015PLSCB..11E3968A. doi:10.1371/journal.pcbi.1003968. PMC 4288726. PMID 25569850.
Azzalini, A., 1996. Statistical Inference Based on the likelihood. Chapman & Hall, London.
Beaumont, M. A., Zhang, W & Balding, D. J. 2002. Approximate Bayesian Computation in Population Genetics. Genetics, 162 (4), 2025–2035.
Berlincourt, M., Angel, L. P., & Arnould, J. P. Y. (2015). Combined use of GPS and accelerometry reveals fine scale three-dimensional foraging behaviour in the short-tailed shearwater. PLoS ONE, 10(10), 1–16. https://doi.org/10.1371/journal.pone.0139351
Beven, K. & Binley, A.(1992) The future of distributed models: Model calibration and uncertainty prediction. Hydrological Processe 6 (3): 279–298. doi:10.1002/hyp.3360060305. ISSN 0885-6087.
Blackwell, P. G. (2019). Integrated Continuous-time Hidden Markov Models. ArXiv, 1-18.
Blackwell, P. G., Niu, M., Lambert, M. S., & Lapoint, S. D. (2016). Exact Bayesian inference for animal movement in continuous time. Methods in Ecology and Evolution, 7(2), 184–195. https://doi.org/10.1111/2041-210X.12460
Blasone, R-S., Vrugt, J. A., Madsen, H., Rosbjerg, D., Robinson, B. A., & Zyvoloski, G. A. (2008). Generalized likelihood uncertainty estimation (GLUE) using adaptive Markov chain Monte Carlo sampling. Advances in Water Resources, 31(4), 630-648. https://doi.org/10.1016/j.advwatres.2007.12.003
Boulcott, P., P. J. Wright, F. M. Gibb, H. Jensen, and I. M. Gibb. 2007. Regional variation in maturation of sandeels in the North Sea. Ices Journal of Marine Science 64:369-376.
Box, G.E.P. (1976) Science and statistics. Journal of the American Statistical Association, 71 (356): 791–799, doi:10.1080/01621459.1976.10480949.
Boyce, M. S., Vernier, P. R., Nielsen, S. E., & Schmiegelow, F. K. A. (2002). Evaluating resource selection functions. Ecological Modelling, 157, 281–300.
Boyd, C., R. Castillo, G. L. Hunt, A. E. Punt, G. R. Vanblarisom, H. Weimerskirch, & S. Bertrand. 2015. Predictive modelling of habitat selection by marine predators with respect to the abundance and depth distribution of pelagic prey. J. Anim. Ecol. 84:1575-1588.
Carroll, G., M. Cox, R. Harcourta, B. J. Pitchera, D. Slipa & I. Jonsen. 2017. Hierarchical influences of prey distribution on patterns of capture by a marine predator. Functional Ecology. 21:387-393.
Chimienti M., T. Cornulier, E. Owen, M. Bolton, I. M. Davies, J. M. J. Travis & B. E. Scott. 2017. Taking movement data to bew depths: Inferring prey availability and patch profitability from seabird foraging behaviour. Ecology and Evolution: 7:10252-10265.
Chivers, L. S., Lundy, M. G., Colhoun, K., Newton, S. F., Houghton, J. D. R., & Reid, N. (2012). Foraging trip time-activity budgets and reproductive success in the black-legged kittiwake. Marine Ecology Progress Series, 456, 269-277. https://doi.org/10.3354/meps09691
Cleasby, I. R., Wakefield, E. D., Bearhop, S., Bodey, T. W., Votier, S. C., & Hamer, K. C. (2015). Three-dimensional tracking of a wide-ranging marine predator: Flight heights and vulnerability to offshore wind farms. Journal of Applied Ecology, 52(6), 1474–1482. https://doi.org/10.1111/1365-2664.12529
Craig, P.S.; Goldstein, M., Seheult, A.H.; Smith, J.A. (1997) Gatsonis, C., Hodges, J.S., Kass, R.E., McCulloch, R., Rossi, P. & Singpurwalla, N.D. (eds.). Pressure Matching for Hydrocarbon Reservoirs: A Case Study in the Use of Bayes Linear Strategies for Large Computer Experiments. Case Studies in Bayesian Statistics. Lecture Notes in Statistics. New York, NY: Springer. 121: 37–93. doi:10.1007/978-1-4612-2290-3_2. ISBN 978-1-4612-2290-3.
Daunt, F., Fang, Z., Howells, R., Harris, M., Wanless, S., Searle, K.R, and Elston, D. (2020) Improving estimates of seabird body-mass survival rates. Scottish Marine and Freshwater Science 11, No 13. DOI: 10.7489/12329-1
Daunt F, Reed TE, Newell M, Burthe S, Phillips RA, Lewis S & Wanless S (2014) Longitudinal bio‐logging reveals interplay between extrinsic and intrinsic carry‐over effects in a long‐lived vertebrate. Ecology 95, 2077-2083.
Deakin Z, Hamer KC, Sherley RB, Bearhop S, Bodey TW, Clark BL, Grecian WJ, Gummery M, Lane J, Morgan G, Morgan L, Phillips RA, Wakefield ED & Votier SC (2019) Sex differences in migration and demography of a wide-ranging seabird, the northern gannet. Mar Ecol Prog Ser 622, 191-201.
Dunn, R., Wanless, S., Green, J.A., Harris, M.P. & Daunt, F. (2019) Effects of body size, sex, parental care and moult strategies on auk diving behaviour outside the breeding season. Journal of Avian Biology 50:e02012
Dunn RE, Wanless S, Daunt F, Harris MP & Green JA (2020). A year in the life of a North Atlantic seabird: behavioural and energetic adjustments during the annual cycle. Sci Reports, 10, 5993.
EFSA (European Food Safety Authority), 2014. Guidance on Expert Knowledge Elicitation in Food and Feed Safety Assessment. EFSA Journal, 12(6):3734
Enners L, Schwemmer P, Corman A, Voigt CC & Garthe S (2018). Intercolony variations in movement patterns and foraging behaviors among herring gulls (Larus argentatus) breeding in the eastern Wadden Sea. Ecol Evol, 7529–7542.
Erikstad, K.E. Sandvik, H., Fauchald, P. & Tveraa, T. (2009) Short- and long-term consequences of reproductive decisions: an experimental study in the puffin 90: 3197-3208
Fayet AL, Freeman R, Shoji A, Boyle D, Kirk HL, Dean BJ, Perrins CM & Guilford T (2016). Drivers and fitness consequences of dispersive migration in a pelagic seabird. Behav Ecol 27, 1061–1072.
Fearnhead, P. & Prangle, D. (2012) Constructing summary statistics for approximate Bayesian computation: semi-automatic approximate Bayesian computation. Journal of the Royal Statistical Society, Series B. 74 (3), 419–474. CiteSeerX 10.1.1.760.7753. doi:10.1111/j.1467-9868.2011.01010.x.
Fithian, W., & Hastie, T. (2013). Finite-sample equivalence in statistical models for presence-only data. Annals of Applied Statistics, 7(4), 1917–1939. https://doi.org/10.1214/13-AOAS667
Frederiksen, M., P. J. Wright, M. P. Harris, R. A. Mavor, M. Heubeck, and S. Wanless. 2005. Regional patterns of kittiwake Rissa tridactyla breeding success are related to variability in sandeel recruitment. Marine Ecology Progress Series 300:201-211.
Früwirth-Schnatter, S. (1994). Data augmentation and dynamic linear models. Journal of Time Series Analysis 15, 183-202
Garthwaite, P.H, Kadane, J. B. & O'Hagan (2005) Statistical Methods for Eliciting Probability Distributions. Journal of the American Statistical Association, 100(470), 680-700.
Glew, K. St. J., Wanless, S., Harris, M.P., Daunt, F., Erikstad, K.E., Strøm, H. & Trueman, C.N. (2018) Moult location and diet of auks in the North Sea, inferred from coupled light-based and isotope-based geolocation. Marine Ecology Progress Series 599: 239-251
Glew, K. St. J., Wanless, S., Harris, M.P., Daunt, F., Erikstad, K.E., Strøm, H., Speakman, J., Kürten, B. & Trueman, C.N. (2019) Sympatric Atlantic puffins and razorbills show contrasting responses to adverse marine conditions during winter foraging within the North Sea. Movement Ecology 7:33 https://doi.org/10.1186/s40462-019-0174-4
Gillies N, Fayet AL, Padget O, Syposz M, Wynn J, Bond S, Evry J, Kirk H, Shoji A, Dean B, Freeman R & Guilford T (2020). Short-term behavioural impact contrasts with long-term fitness consequences of biologging in a long-lived seabird. Sci Reports, 10, 15056.
Goldstein, M. & Rougier, J.C. (2009) Reified Bayesian Modelling and Inference for Physical Systems. Journal of statistical planning and inference. 139(3), 1221 - 1239
Goldstein, M. & Wooff, D. (2007) Bayes linear statistics: Theory and methods. John Wiley & Sons
Grecian WJ, Lane JV, Michelot T, Wade HM & Hamer KC (2018) Understanding the ontogeny of foraging behaviour: insights from combining marine predator bio-logging with satellite-derived oceanography in hidden Markov models. J. R. Soc. Interface 15: 20180084.
Grecian WJ, Williams HJ, Votier SC, Bearhop S, Cleasby IR, Grémillet D, Hamer KC, Le Nuz M, Lescroël A, Newton J, Patrick SC, Phillips RA, Wakefield ED & Bodey TW (2019) Individual spatial consistency and dietary flexibility in the migratory behavior of northern gannets wintering in the northeast Atlantic. Front Ecol Evol 7, 214.
Greenstreet, S. P. R., E. Armstrong, H. Mosegaard, H. Jensen, I. M. Gibb, H. M. Fraser, B. E. Scott, G. J. Holland, and J. Sharples. 2006. Variation in the abundance of sandeels Ammodytes marinus off southeast Scotland: an evaluation of area-closure fisheries management and stock abundance assessment methods. Ices Journal of Marine Science 63:1530-1550.
Harris MP & Wanless S (2012). The Puffin. T & AD Poyser, London.
Heath, M. R., F. C. Neat, J. K. Pinnegar, D. G. Reid, D. W. Sims, and P. J. Wright. 2012. Review of climate change impacts on marine fish and shellfish around the UK and Ireland. Aquatic Conservation-Marine and Freshwater Ecosystems 22:337-367.
Holland, G. J., S. P. R. Greenstreet, I. M. Gibb, H. M. Fraser, and M. R. Robertson. 2005. Identifying sandeel Ammodytes marinus sediment habitat preferences in the marine environment. Marine Ecology Progress Series 303:269-282.
Jabot, F, Faure, T. & Dumoulin, N. 2013. EasyABC: performing efficient approximate Bayesian computation sampling schemes using R. Methods in Ecology and Evolution, 4 (7), 684–687. doi:10.1111/2041-210X.12050.
Jensen, H., A. Rindorf, P. J. Wright, and H. Mosegaard. 2011. Inferring the location and scale of mixing between habitat areas of lesser sandeel through information from the fishery. Ices Journal of Marine Science 68:43-51.
Johnson, D. S., Thomas, D. L., Ver Hoef, J. M., & Christ, A. (2008). A general framework for the analysis of animal resource selection from telemetry data. Biometrics, 64(3), 968–976. https://doi.org/10.1111/j.1541-0420.2007.00943.x
Jones, E. L., McConnell, B. J., Smout, S., Hammond, P. S., Duck, C. D., Morris, C. D., … Matthiopoulos, J. (2015). Patterns of space use in sympatric marine colonial predators reveal scales of spatial partitioning. Marine Ecology Progress Series, 534, 235–249. https://doi.org/10.3354/meps11370
Kennedy, M. & O'Hagan, A. 2001. Bayesian calibration of computer models (with discussion). J. R. Statist. Soc. Ser. B, 63, 425–464
Kie, J. G., Matthiopoulos, J., Fieberg, J., Powell, R. A., Cagnacci, F., Mitchell, M. S., … Moorcroft, P. R. (2010). The home-range concept: Are traditional estimators still relevant with modern telemetry technology? Philosophical Transactions of the Royal Society B: Biological Sciences, 365(1550), 2221–2231. https://doi.org/10.1098/rstb.2010.0093
Klinger, E.; Rickert, D.; Hasenauer, J. (2018) pyABC: distributed, likelihood-free inference. Bioinformatics, 34(20), 3591–3593. doi: 10.1093/bioinformatics/bty36
Langrock, R., King, R., Matthiopoulos, J., Thomas, L., Fortin, D., & Morales, J. M. (2012). Flexible and practical modeling of animal telemetry data: Hidden Markov models and extensions. Ecology, 93, 2336–2342. https://doi.org/10.1890/11-2241.1
Langton, R., P. Boulcott, & P. J. Wright. 2021. A verified distribution model for the lesser sandeel, Ammodytes marinus. MEPS Vol. 667: 145–159.
McClintock, B. T., & Michelot, T. (2018). momentuHMM: R package for generalized hidden Markov models of animal movement. Methods in Ecology and Evolution, 9(6), 1518–1530. https://doi.org/10.1111/2041-210X.12995
Marjoram, P., MoliPtor, J., Plagnol, V. & Tavare, S. (2003) Markov chain Monte Carlo without likelihoods. Proc Natl Acad Sci U S A. 100 (26), 15324–15328. https://doi:10.1073/pnas.0306899100
Masden, E.A., McCluskie, A., Owen, E. & Langston, R.H.W. (2015) Renewable energy developments in an uncertain world: The case of offshore wind and birds in the UK. Marine Policy, 51, 169-172.
Mengyang, G., X. Wang, and J. O. Berger. 2018. Robust Gaussian stochastic process emulation. Annals of Statistics (46{6A}), pp 3038—3066.
Michelot, T., Blackwell, P. G., & Matthiopoulos, J. (2019a). Linking resource selection and step selection models for habitat preferences in animals. Ecology, 100(1), 1–12. https://doi.org/10.1002/ecy.2452
Michelot, T., Gloaugen, P., Blackwell, P. G., & Etienne, M.-P. (2019b). The Langevin diffusion as a continuous-time model of animal movement and habitat selection. Methods in Ecology and Evolution, 10(11), 1894–1907. https://doi.org/10.1111/2041-210X.13275
Michelot, T., Langrock, R., & Patterson, T. A. (2016). moveHMM: An R package for the statistical modelling of animal movement data using hidden Markov models. Methods in Ecology and Evolution, 7, 1308–1315. https://doi.org/10.1111/2041-210X.12578
Mirzaei, M., Huang, Y. F. & El-Shafie, A. (2015) Application of the generalized likelihood uncertainty estimation (GLUE) approach for assessing uncertainty in hydrological models: a review. Stochastic Environmental Research and Risk Assessment.
Montgomery, D. C., Peck, E.A. & Vining, G.G. (2012) Introduction to linear regression analysis. John Wiley & Sons.
Morales, J. M., Haydon, D. T., Frair, J. L., Holsinger, K. E., & Fryxell, J. M. (2004). Extracting More out of Relocation Data: Building Movement Models as Mixtures of Random Walks. Ecology, 85(9), 2436-2445
Moriarty, M., S. A. Sethi, D. Pedreschi, T. S. Smeltz, C. McGonigle, B. P. Harris, N. Wolf, and S. P. R. Greenstreet. 2020. Combining fisheries surveys to inform marine species distribution modelling. Ices Journal of Marine Science 77:539-552.
National Archives (2022) Open Government Licence https://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/ Accessed 31/03/2022
Nott, D.J., Marshall, L. & Brown, J. (2012) Generalized likelihood uncertainty estimation (GLUE) and approximate Bayesian computation: What's the connection? Water Resources Research 48, W12602, doi:10.1029/2011WR011128, 2012
O'Hagan, A. (2006) Bayesian analysis of computer code outputs: A tutorial. Reliability Engineering & System Safety, 91, 1290-1300. https://doi.org/10.1016/j.ress.2005.11.025.
O'Hagan, A. (2019) Expert Knowledge Elicitation: Subjective but Scientific. The American Statistician, 73:sup1, 69-81, DOI: 10.1080/00031305.2018.1518265
Olin, A. B., N. S. Banas, P. J. Wright, M. R. Heath, and R. G. Nager. 2020. Spatial synchrony of breeding success in the black-legged kittiwake Rissa tridactyla reflects the spatial dynamics of its sandeel prey. Marine Ecology Progress Series 638:177-190.
Oro, D. & Furness, R.W. (2002) Influences of food availability and predation on survival of kittiwakes. Ecology 83: 2516-2528
Owen, E., Wakefield, E., Hollinrake, P., Leitch, A., Steel, L., & Bolton, M. (2019). Breeding together, feeding apart: Sympatrically breeding seabirds forage in individually distinct locations. Marine Ecology Progress Series, 620, 173-183. https://doi.org/10.3354/meps12979
Oyebamiji, O. K., Wilkinson, D. J., Jayathilake, P. G., Curtis, T. P., Rushton, S. P., Li, B., & Guptad, P. 2017. Gaussian process emulation of an individual-based model simulation of microbial communities. Journal of Computational Science, 22, 69-84.
Padget O, Stanley G, Willis JK, Fayet AL, Bond S, Maurice L, Shoji A, Dean B, Kirk H, Juarez-Martinez I, Freeman R, Bolton M, Guilford T (2019) Data from: Shearwaters know the direction and distance home but fail to encode intervening obstacles after free-ranging foraging trips. Movebank Data Repository. doi:10.5441/001/1.k20j58qt.
Patrick, S. C., Bearhop, S., Grémillet, D., Lescroël, A., Grecian, W. J., Bodey, T. W., … Votier, S. C. (2014). Individual differences in searching behaviour and spatial foraging consistency in a central place marine predator. Oikos, 123(1), 33-40. https://doi.org/10.1111/j.1600-0706.2013.00406.x
Patterson, T. A., Parton, A., Langrock, R., Blackwell, P. G., Thomas, L., & King, R. (2017). Statistical modelling of individual animal movement: an overview of key methods and a discussion of practical challenges. AStA Advances in Statistical Analysis, 101(4), 399–438. https://doi.org/10.1007/s10182-017-0302-7
Patterson, T. A., Thomas, L., Wilcox, C., Ovaskainen, O., & Matthiopoulos, J. (2008). State–space models of individual animal movement. Trends in Ecology and Evolution, 23(2), 87–94. https://doi.org/10.1016/j.tree.2007.10.009
Pedersen, S. A., P. Lewy, and P. Wright. 1999. Assessments of the lesser sandeel (Ammodytes marinus) in the North Sea based on revised stock divisions. Fisheries Research 41:221-241.
Peel, A., Jenks, M., Choudhury, M., Lovett, R., Rejon-Parrilla, J. C., Sims, A. & Craig, J. 2018. Use of Expert Judgement Across NICE Guidance-Making Programmes: A Review of Current Processes and Suitability of Existing Tools to Support the Use of Expert Elicitation. Applied Health Economics and Health Policy 16(6), 819-836. https://doi.org/10.1007/s40258-018-0415-5
Peschko, V., Mercker, M., & Garthe, S. (2020). Telemetry reveals strong effects of offshore wind farms on behaviour and habitat use of common guillemots (Uria aalge) during the breeding season. Marine Biology, 167(8), 1-13. https://doi.org/10.1007/s00227-020-03735-5
Pritchard, J.K., Seielstad, M.T., Perez-Lezaun, A. et al. (1999). Population Growth of Human Y Chromosomes: A Study of Y Chromosome Microsatellites. Molecular Biology and Evolution. 16 (12): 1791–1798
Rasmussen, C. E. & C. K. I. Williams (2006) Gaussian Processes for Machine Learning. The MIT Press
Raymond, B., Lea, M. A., Patterson, T., Andrews-Goff, V., Sharples, R., Charrassin, J. B., … Hindell, M. A. (2015). Important marine habitat off east Antarctica revealed by two decades of multi-species predator tracking. Ecography, 38(2), 121–129. https://doi.org/10.1111/ecog.01021
Regnier, T., F. M. Gibb, and P. J. Wright. 2019. Understanding temperature effects on recruitment in the context of trophic mismatch. Scientific Reports 9.
Reid JB & Camphuysen CJ (1998). The European Seabirds at Sea database. Biol Cons Fauna 102, 291.
Rindorf, A., P. J. Wright, H. Jensen, and M. Maar. 2016. Spatial differences in growth of lesser sandeel in the North Sea. Journal of Experimental Marine Biology and Ecology 479:9-19.
Sadykova, D., B. E. Scott, M. De Dominicis, S. L. Wakelin, A. Sadykov, and J. Wolf. 2017. Bayesian joint models with INLA exploring marine mobile predator–prey and competitor species habitat overlap. Ecology and Evolution 7:5212-5226.
Sadegh, M. & Vrugh, J. A. (2013) Bridging the gap between GLUE and formal statistical approaches: approximate Bayesian computation. Hydrol. Earth Syst. Sci., 17, 4831–4850. doi:10.5194/hess-17-4831-2013
Searle, K., Mobbs, D., Butler, A., Bogdanova, M., Freeman, S., Wanless, S. & Daunt, F. (2014) Population consequences of displacement from proposed offshore wind energy developments for seabirds breeding at Scottish SPAs (CR/2012/03). Report to Scottish Government.
Searle, K. R., Mobbs, D. C., Butler, A., Furness, R. W., Trinder, M. N., & Daunt, F. (2018). Finding out the fate of displaced birds. Scottish Marine and Freshwater Science, 9(8), 1-161. https://doi.org/10.7489/12118-1
Shamoun-Baranes, J., Bouten, W., Van Loon, E. E., Meijer, C., & Camphuysen, C. J. (2016). Flap or soar? How a flight generalist responds to its aerial environment. Philosophical Transactions of the Royal Society B: Biological Sciences, 371(1704). https://doi.org/10.1098/rstb.2015.0395
Shamoun-Baranes J, Burant JB, Van Loon EE, Bouten W & Camphuysen CJ (2017) Short distance migrants travel as far as long distance migrants in lesser black-backed gulls Larus fuscus. J Avian Biol 48, 49–57.
Sisson, S. A., Fan, Y. & Tanaka, M. M. 2007. Sequential Monte Carlo without likelihoods. Proc Natl Acad Sci U S A. 104 (6), 1760–1765. https://doi:10.1073/pnas.0607208104
Spelt A, Williamson C, Shamoun-Baranes J, Shepard E, Rock P & Shane Windsor (2019). Habitat use of urban-nesting lesser black-backed gulls during the breeding season. Sci Reports 9, 10527.
Thaxter CB, Ross-Smith VH, Bouten W, Clark NA, Conway GJ, Masden EA, Clewley GD, Barber LJ & Burton NHK (2019) Avian vulnerability to wind farm collision through the year: Insights from lesser black-backed gulls (Larus fuscus) tracked from multiple breeding colonies. J Appl Ecol 56, 2410–2422.
Vernon, I., Goldstein, M. & Bower. R. (2014). Galaxy Formation: Bayesian History Matching for the Observable Universe. Statistical Science, 29 (1): 81–90. arXiv:1405.4976. doi:10.1214/12-STS412 – via Project Euclid.
Waggit JJ, Evans GH, Andrade J, Banks AN, Boisseau, O, Bolton M, Bradbury G, Brereton T, Camphuysen CJ, Durinck J, Felce T, Fijn CR, Garcia-Baron I, Garthe S, Geelhoed SCV, Gilles A, Goodall M, Haelters J, Hamilton S, Hartny-Mills L, Hodgins N, James K, Jessopp M, Kavanagh AS, Leopold M, Lohrengel K, Louzao M, Markones N, Martínez-Cedeira J, Ó Cadhla O, Perry SL, Pierce GJ, Ridoux V, Robinson KP, Santos BM, Saavedra C, Skov H, Stienen EWM, Sveegaard S, Thompson P, Vanermen N, Wall D, Webb A, Wilson J, Wanless S & Hiddink JG (2019). Distribution maps of cetacean and seabird populations in the North‐East Atlantic. J Appl Ecol 57, 253-269.
Wakefield, E. D., Owen, E., Baer, J., Carroll, M. J., Daunt, F., Dodd, S. G., … Bolton, M. (2017). Breeding density, fine- scale tracking, and large-scale modeling reveal the regional distribution of four seabird species: Ecological Applications, 27(7), 2074-2091.
Wakefield, E. D., Cleasby, I. R., Bearhop, S., Bodey, T. W., Davies, R. D., Miller, P. I., … Hamer, K. C. (2015). Long-term individual foraging site fidelity-why some gannets don't change their spots. Ecology, 96(11), 3058-3074. https://doi.org/10.1890/14-1300.1
Wakefield, E. D., Phillips, R. A., Trathan, P. N., Arata, J., Gales, R., Huin, N., … Modeling, E. (2011). Habitat preference, accessibility, and competition limit the global distribution of breeding black-browed Albatrosses. Ecological Monographs, 81(1), 141–167.
Wakefield ED, Bodey TW, Bearhop S, Blackburn J, Colhoun K, Davies R, Dwyer RG, Green JA, Grémillet D, Jackson AL, Jessopp MJ, Kane A, Langston RHW, Lescroël A, Murray S, Le Nuz M, Patrick SC, Péron C, Soanes LM, Wanless S, Votier SC & Hamer KC (2013). Space partitioning without territoriality in gannets. Science, 341, 68–70.
Wakefield ED, Owen E, Baer J, Carroll MJ, Daunt F, Dodd SG, Green JA, Guilford T, Mavor RA, Miller PI, Newell MA, Newton SF, Robertson RS, Shoji A, Soanes, LM, Votier SC, Wanless S & Bolton M (2017). Breeding density, fine-scale tracking, and large-scale modeling reveal the regional distribution of four seabird species. Ecol Appl, 27, 2074–2091.
Wanless, S., M. P. Harris, M. A. Newell, J. R. Speakman, and F. Daunt. 2018. Community-wide decline in the occurrence of lesser sandeels Ammodytes marinus in seabird chick diets at a North Sea colony. Marine Ecology Progress Series 600:193-206.
Warwick-Evans, V., Atkinson, P. W., Walkington, I., & Green, J. A. (2018). Predicting the impacts of wind farms on seabirds: An individual-based model. Journal of Applied Ecology, 55(2), 503–515. https://doi.org/10.1111/1365-2664.12996
Watanabe, Y. Y., M. Ito, & A. Takahasi. 2014. Testing optimal foraging in a penguin-krill system. Proc. Roy. Soc. Biol. 281:1-7
Wilkinson, R. D. (2013) Approximate Bayesian computation (ABC) gives exact results under the assumption of model error. Stat.App.Gen.Mol.Bio. 12, 129-141
Williamson, D., Goldstein, M., Allison, L., Blaker, A., Challenor, P., Jackson, L. & Yamazaki, K. (2013). History matching for exploring and reducing climate model parameter space using observations and a large perturbed physics ensemble. Climate Dynamics 41(7), 1703–1729. Bibcode:2013ClDy...41.1703W. doi:10.1007/s00382-013-1896-4.
Wright, P. J., and G. S. Begg. 1997. A spatial comparison of common guillemots and sandeels in Scottish waters. Ices Journal of Marine Science 54:578-592.
Wright, P. J., A. Christensen, T. Regnier, A. Rindorf, and M. van Deurs. 2019. Integrating the scale of population processes into fisheries management, as illustrated in the sandeel, Ammodytes marinus. Ices Journal of Marine Science 76:1453-1463.
Van Donk S, Shamoun‐Baranes J, Bouten W, Van Der Meer J & Camphuysen CJ (2020). Individual differences in foraging site fidelity are not related to time-activity budgets in Herring Gulls. Ibis 162, 429–445.
Contact
Email: ScotMER@gov.scot
There is a problem
Thanks for your feedback