Impact of climate change on seabird species off the east coast of Scotland and potential implications for environmental assessments: study
This study investigated the potential impacts of climate change on seabird distribution, abundance and demography off the east coast of Scotland, and examined integration of these climate models into standard population forecast models used in assessments for offshore wind developments.
Appendix E: JAGS model code
Productivity model
model{
for(j in 1:nobs.prod){
BS.Fledged[j] ~ dbin(p.prod[j], mbs * BS.Pairs[j])
log(p.prod[j]) <- fixed.prod[j] + re.prod.year[iyear[j]] + re.prod.site[isite[j]] + re.prod.ilre[j]
fixed.prod[j] <- alpha.prod + sum(beta.prod[1:nxp] * x.prod[j,1:nxp])
re.prod.ilre[j] ~ dnorm(0, tau.prod.ilre)
}
for(s in 1:nsites){
re.prod.site[s] ~ dnorm(0, tau.prod.site)
}
for(t in 1:nyears){
re.prod.year[t] ~ dnorm(0, tau.prod.year)
}
alpha.prod ~ dnorm(0, hyper.prod.alpha)
for(k in 1:nxp){
beta.prod[k] ~ dnorm(0, hyper.prod.beta)
}
tau.prod.site ~ dgamma(hyper.prod.site[1], hyper.prod.site[2])
tau.prod.year ~ dgamma(hyper.prod.year[1], hyper.prod.year[2])
tau.prod.ilre ~ dgamma(hyper.prod.ilre[1], hyper.prod.ilre[2])
}
Survival model
model{
for(j in 1:nobs.asurv){
Pairs[j] ~ dpois(Pairs.true[j])
Pairs.true[j] <- Pairs.surv[j] + nrecuits.pairs[j]
Pairs.surv[j] ~ dpois(p.asurv[j] * Pairs.prev[j])
nrecuits.pairs[j] <- step(round(nrecruits[j] / 2))
nrecruits[j] ~ dbin(p.recruit[j], Fledged.mafb[j])
Fledged.mafb[j] <- BS.Fledged.mafb[j] + US.Fledged.mafb[j]
BS.Fledged.mafb[j] ~ dbin(mup.prod[j], mbs * BS.Pairs.mafb[j])
US.Fledged.mafb[j] ~ dbin(mup.prod[j], mbs * (Pairs.mafb[j] - BS.Pairs.mafb[j]))
p.recruit[j] <- pow(p.jsurv[j], afb)
mup.prod[j] ~ dbeta(hyper.mup.prod[1], hyper.mup.prod[2])
log(p.jsurv[j]) <- log(pe.jsurv) + link.jsurv * (log(p.asurv[j]) - log(pe.asurv))
log(p.asurv[j]) <- fixed.asurv[j] + re.asurv.year[iyear[j]] + re.asurv.site[isite[j]]
fixed.asurv[j] <- alpha.asurv + sum(beta.asurv[1:nxa] * x.asurv[j,1:nxa])
}
for(s in 1:nsites){
re.asurv.site[s] ~ dnorm(0, tau.asurv.site)
}
for(t in 1:nyears){
re.asurv.year[t] ~ dnorm(0, tau.asurv.year)
}
alpha.asurv ~ dnorm(0, hyper.asurv.alpha)
for(k in 1:nxa){
beta.asurv[k] ~ dnorm(0, hyper.asurv.beta)
}
tau.asurv.site ~ dgamma(hyper.asurv.site[1], hyper.asurv.site[2])
tau.asurv.year ~ dgamma(hyper.asurv.year[1], hyper.asurv.year[2])
}
Trend model
model{
for(j in 1:nobs.trend){
Pairs[j] ~ dpois(mu[j])
mu[j] <- log(Pairs.prev[j] + 1) + ratmu[j]
ratmu[j] <- fixed.trend[j] + re.trend.year[iyear[j]] + re.trend.site[isite[j]] + re.trend.ilre[j]
fixed.trend[j] <- alpha.trend + sum(beta.trend[1:nxt] * x.trend[j,1:nxt])
re.trend.ilre[j] ~ dnorm(0, tau.trend.ilre)
}
for(s in 1:nsites){
re.trend.site[s] ~ dnorm(0, tau.trend.site)
}
for(t in 1:nyears){
re.trend.year[t] ~ dnorm(0, tau.trend.year)
}
alpha.trend ~ dnorm(0, hyper.trend.alpha)
for(k in 1:nxt){
beta.trend[k] ~ dnorm(0, hyper.trend.beta)
}
tau.trend.site ~ dgamma(hyper.trend.site[1], hyper.trend.site[2])
tau.trend.year ~ dgamma(hyper.trend.year[1], hyper.trend.year[2])
tau.trend.ilre ~ dgamma(hyper.trend.ilre[1], hyper.trend.ilre[2])
}
Contact
Email: ScotMER@gov.scot
There is a problem
Thanks for your feedback